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Abstract
In this paper, we study composition operators on a Banach space of analytic functions, which includes the

Bloch space. We presented operators from [, into a Banach space of type p. We characterize a composition
operator from [, into a Banach space.
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1. Introduction

In mathematics, the composition operator with symbol Cy is a linear operator defined by
the rule Cy(f) = f o ¢, for f in the Banach space. This operator is formally linear:

(af +bg)ep =afep+bge¢
Moreover, composition operators often come up in studying other operators. For all f
belonging to a selected class. It is immediate to see that such an operator preserves
harmonic mappings. In physics, and especially the area of dynamical systems, the
composition operator is usually referred to as the Koopman operator. The domain of a
composition operator can be taken more narrowly, as some Banach space, often
consisting of holomorphic functions: for example, some Hardy space or Bergman space.
In mathematics, composition operators commonly occur in the study of shift operators,
for example, in the Beurling—Lax theorem and the Wold decomposition. Shift operators
can be studied as one-dimensional spin lattices. Composition operators appear in the
theory of Aleksandrov—Clark measures. A diagonal operator in the broad sense of the
word is an operator D of multiplication by a complex function A in the direct integral of
Hilbert spaces. In functional analysis, a branch of mathematics, a compact operator is
a linear operator T: X— Y, where X,Y are normed vector spaces, with the property
that T maps bounded subsets of X to relatively compact subsets of Y (subsets with
compact closure in Y ) [8,12]. Such an operator is necessarily a bounded operator, and
so continuous. Some authors require that X,Y are Banach, but the definition can be
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extended to more general spaces. Any bounded operator T that has finite rank is a
compact operator; indeed, the class of compact operators is a natural generalization of
the class of finite-rank operators in an infinite-dimensional setting [4,7,8,9,11,12,14]. This
study is arranged as follows. In section 1, we present background and fundamental
information of diagonal operators. In section 2 we present operators from [, into a Banach

space of type p.In section 3, we characterize a composition operator from [, into a
Banach space.
1- Preliminaries
Let S be an operator admitting a factorization
N

lq—E
and

lg > [, = E
where D is a diagonal operator and T an arbitrary operator with the image in a Banach
space of type p. We shall characterize these operators by entropy numbers. We give

summability results for the eigenvalues of certain types of compact operators that are
then applied to study integral operators.

The entropy numbers possess the following properties [1, 2]
e Monotonicity:
IIS]| = e1(S) = e,(S)-~- =0, forS € L(E,F).
e Additivity:
nim(S+T) <e,(s)+e,(T), for S,T € L(E,F).
e Multiplicativity:
enim-1(ST) < e,(s)e,(T), for T € L(E,F),S € L(E,G).
Put
Lyq=1{S€L:(e,(S) €Ly}
and

Lp,q(5) = ep.q”(en(s))”p,q , for S€Ly,

Where 0<p,q <o, stands for the quasi-normed Lorentz sequence space (cf.
[3,8,9,12,15,16,21]), which for p = q is the classical space of p — summable sequences
denoted by [Lp; || ||p] and €,, is a norming constant. Then L,.; L,, becomes an
injective and surjective quasi-normed operator ideal. [2,6,8,9,10,12,13].

From the multiplicativity of the entropy numbers we get the useful product formula
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1 1 1 1 1 1
L o[ cL or-=—+—, -=—+—.
pl,q1l p0,q0 p.q f p o p1’ q q0 g1

A Banach space E is type p,1 < p < 2, if there is a constant c(p, E) such that

f dt < c(P, E) (iuxiup)E.

For x4, - x, € E, where ry,---1;, are the Rademacher functions on [0,1].

n

Z i (0)x;

=1

There is a constant c(p,E) such that for all independent E -valued random variables
Zq,,Zn, N = 1,2,--- with finite p — th moment the inequality

D Gi—Ez)|| < c.B) (Z IEnzinp) :
i=1 i=1

holds, where E is the mathematical expectation.

2- Operators from [, into a Banach Space of Type p
Definition 1
Let X be a bounded linear space n € N and B be a subset of X. Then the quantity
E,(B,X) = inf{e > 0: B can be covered by 2" 1 balls with radius € in X }
= infy, SUPxepy Mfyem, llx — ¥l 1)
It is called entropy number of B. Where M, runs over all the subset in Y with |M,,| < 2™~1.
Definition 2
Let (X, |I'[Dx and (Y, ]| - |D,Y be two normed linear spaces
T:X — Y be abounded linear operator, and n € N. Then the quantity
En(T) =En(T:X —Y) = E,(T(Bx),Y) (2)

called the entropy number of operator T [8,9,12,17,18,19,20], where By is the unit ball of
X.

From Definition 1 and Definition 2 we deduce the following lemmas:
Lemmal

Let E be of type p,ﬁ + % =1, and S € L(I E). Then,
-1 2/ m
e (S: " — E) < c(p, E)IS: LT — Ellk /%'log /7'(3%)

for k =1,---,m where [" denotes the m —dimentional vector space equipped with the
norm ||-|l;.
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Let E be of type p,é +% =1, and S € L(ITY, E). Then

1 11
SUP1<k<wkser(S: 1" — E) < c(p,E)||S: " — E|lms »" .

Fors<p' ' m=1.2,- -
Proof
By using Lemma 1 we get

Fors <p'.

1 1

1 —
SUpP1<k<kser(S) < c(p, E)IIS|Isupi<kemks ?'log2

1 1
< co(s, p, E)IS|lms #*
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3)

1
Now, we estimate supy<mksex(S) <. For this purpose, let I, denote the identity operator
on an m- dimensional space. Because

Suprsmkser(S) < supr>1(m + k)se(m + k)(S)

and

1

< supgz1(m + k)se(m)(S: 17" = E)ey(I: 1" = 1)
1 1 1

< em(S)supin 25 (5 + k) e ()

1 1 1 1
< 2smsep(S) + 2se, (S)supgs1kser ()

1 1
Supkzlkgek(lm) < (Zio eic (Im));

where e, (1,,,) < 4-27%"1/2m and 25/?™ > 1 + (s/2m) In(2), then, we have

<4 (Z? (2_(k_1)/2m)s)%

<4 (i(zs/zm)’“)S

1

1 21/271’7.
(1—2—5/2m)1/s_ (zs/zm_l)l/s
82'/s 1

< —1m /51
(sin(2))/s

Feb 2025 | 4



Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition
ISSN: 1673-064X
E-Publication: Online Open Access
Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14842331
em(S) < ¢ (P, E)IIS|Im™/7".

The estimate

1 1

1 P
Supgsmkser(S) < (S, P,E)|IS|lm= #'.
The preceding inequalities yield the required assertion via

1 1 1
SUP <<k (S) < SUpyckemkser(S) + supmarkser(S)

<c(S,P, E)IISllmi_i for s<p'
Which completes the proof.
3- Characterization of Composition Operator
In this section we characterized the composition operators from [, into a Banach

Proposition 1. Let § = % +%— max G;%).If ro < 1, then there exists an operator S €

£(1g, 1) with

YISl < oo, and (1 (5)) € L,
1

Proof. For1<q <2,weputS=D ~ (g;) € ,\l,,,. Inthe case 2 < g < o, let T ,o = (1),

_ Tzn Tzn _
Tpntr = (Tzn _Tzn), n=12,-

be the Littlewood matrices. Then, Tj. = 2™I,n, where I,» is the identity operator on the
2n-dimensional vector space, |1;(Tyn)|= 22, for i = 1,2,---,2™. Choose a monotonically
decreasing sequence (a,) € I\l and define

1
S= ) 0a@) ———=/aTs = 1g(B") > 1, (")

As a block wise sum of multiples of the T,»S. Thus S: [, — [, and

o]

T
DlIsxelly = ) ol 2 @,
1

Yol <o

However, we have the following eigenvalue estimation,

I, = ) 125 Ii= "

= |oplp = oo.
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This means (1,(5)) € L;,,. For ry < r. Which completes the proof.
Corollary 1. Let E be of type 1+ ¢€,e > 0,and S; € L(I", E,). Then,

1
SUP1<k<oo z kiek(sj: It - Ej) < z c(s,1+e, Ej)”Sj: it - Ej”m /S_m‘
J J

+ €
fors <?,m =1,2,-- -

Theorem 1. Let E be of type p, T € £;, g and
1

D€ Lxuye,,(0) €E,0< €<, Got@me ™ L
Then, the composition operator S = TD it is hold that
1 2 1
S€Liaror 3= a+o + »
Proof. We may write the diagonal operator D in the form
D
lave 2

and
l(1+e) D—>0 Ly ;; ly

1 1
(1+€)9 T (1+e)

where the generating sequences (o) of D, belong to L+e)g,00 > 1, and (a}')

of D,, then we have

1 1 1
Do € L(S)O'OO( l(1+6)' ll) for ; - (1+€)o + (1+e) 1
And
1 1 1

Thy & L(s)o’oo( l(1+6)' ll) , for ; - (1+€)o + (1+e) 1
Thus

S € Ly, 1+ ° Ls)go (Lia+er E) € Lsa+e(larey E),
For

1 1 1 2 1

+—= -
s s ¢ (A+e) p

Which completes the proof.

Corollary 2. Let E be of type S € L(E,E) an operator which admits the factorization
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D
E—-F 1<e<ow

where X,Y are arbitrary operators and D is a diagonal operator generated by a sequence

2
(O'i) €, L(1+6),(1+6)! 0<e< o, (1+¢€) >1

Then

1 2 . 1 1 1
(/11-(5))/;(1_,_6), for s (1+e) min <;;max ((1+e) 'E))

Theorem 2. Letl =1
s (ro+€) (1+¢€)

S € L(l(1+6), l(1+e)) with

- max( : ) If e > 0. Then, there exists an operator
(1+e)’2

lesxkll(ro+6) ©, and (An(s)) ¢ L(S.To)'

Proof. For 0 < e <1 we putwe putS =D ~ (0;) € Iy 16)\lrg+e),r, -INthecase 0 <e <

o, let T, = (1),
T,n  Ton
Tnn+1 = <szn _72,2,2>, n= 1,2,"'

be the Littlewood matrices. Then, T,» = 2™I,», where I,» is the identity operator on the
2n-dimensional vector space, |;(Tjr)|= 2™?2 , for i = 1,2,--+,2". Choose a monotonically
decreasing sequence () € I, +¢)\lr, and define

1 1
sm = Z (@) ==~ T2 = laro (i) = lare (Iiie)

As a block wise sum of multiples of the T;nS. Thus S™: [(11¢) = L1+ and

_ (r0+s) n\(T0+€) . on
Z”S’“xkllﬁiﬁ) = Zlanwo*)(z") [CONRCTNES

However, we have the following eigenvalue estimation,
To

I, = D sl

> |0, | = oo,

Feb 2025 | 7



Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/

Journal of Xi'an Shiyou University, Natural Sciences Edition
ISSN: 1673-064X

E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025

DOI: 10.5281/zenodo.14842331

. m 1_ 1 11 .
This means (4,,(S™)) € L, ,,, for Let s = Tt + 9 2 and € = 0. Which completes the

proof.
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