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Abstract 

The global population and industrial development surge has triggered a significant influx of heavy metals 
into ecosystems, posing risks to environmental integrity and human health through food chain 
contamination. This comprehensive review examines various methodologies to mitigate heavy metal 
contamination in ecosystems. It meticulously delves into a spectrum of physical and chemical approaches, 
including mechanical and ultrasonic soil washing, ex situ electrokinetic removal, and the utilization of 
chelating materials and soil amendments. Furthermore, it scrutinizes biological interventions employing 
microorganisms, algae, and natural organic products alongside innovative techniques such as 
phytoextraction and phytoremediation. The latter encompasses multifaceted strategies like rhizofiltration, 
phytostabilization, phytodegradation, phytoextraction, and phytovolatilization, emphasizing environmentally 
sustainable solutions to heavy metal pollution. Additionally, the paper evaluates biotechnological methods 
leveraging genetically modified plants and nanotechnological approaches utilizing nanoparticles for metal 
remediation, highlighting their potential contributions to remediation endeavors. The review underscores 
the importance of integrating multiple techniques to foster synergistic approaches for more effective heavy 
metal removal. Each method is assessed based on its treatment efficacy, advantages, and drawbacks, 
drawing insights from pertinent studies in the field. This comprehensive analysis offers a nuanced 
understanding of cutting-edge techniques for heavy metal elimination from ecosystems, elucidating their 
potential contributions and challenges in environmental remediation efforts. It explores the burgeoning role 
of artificial intelligence in heavy metal remediation processes, aiming to illuminate advancements and 
challenges within this rapidly evolving field. 

Keywords: Heavy Metal, Cutting-edge Techniques, Elimination, Phytoextraction, Phytoremediation, 
Artifical Intelligence. 

 
1. INTRODUCTION 

Heavy metal pollution in ecosystems represents a critical environmental concern, posing 
substantial threats to biodiversity and human well-being. Heavy metals infiltrate the 
environment through natural processes and human activities, such as industrial 
operations, mining, and agricultural practices, significantly contributing to their presence 
(Hama Aziz et al. 2023; Tovar-Sánchez et al. 2018). The rapid increase in population 
coupled with industrial advancements has led to a substantial influx of heavy metals into 
ecosystems, ultimately integrating into the food chain and consequently impacting human 
health (Gall, Boyd, and Rajakaruna 2015). Notably, industrial activities are notorious for 
discharging heavy metal-contaminated wastewater into the environment, exacerbating 
water pollution (Hama Aziz et al. 2023; Tovar-Sánchez et al. 2018). The ramifications of 
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heavy metal presence in the environment are profound, affecting diverse ecosystems and 
human health adversely, with chronic exposure potentially resulting in teratogenic and 
carcinogenic outcomes. Hence, it is imperative to pinpoint the primary sources of heavy 
metal contamination and devise effective strategies and policies to manage and mitigate 
their adverse effects (Das et al. 2023; Kumari and Mishra 2021; Norvell and Welch 1984; 
Tchounwou et al. 2012). 

Heavy metals are compounds with a molecular mass exceeding 5.0 g/cm³ (Hodson 
2004), ubiquitously present in soils. However, there exists a normal range for their 
concentration; for instance, copper (Cu), zinc (Zn), lead (Pb), chromium (Cr), nickel (Ni), 
and cadmium (Cd) typically range from 0.0001% to 0.065%. In comparison, iron (Fe) and 
manganese (Mn) can reach concentrations of 10.0% and 0.002%, respectively (Ernst 
2006). Excluding iron, heavy metals exhibit toxicity to plants above a concentration 
threshold of 0.1% (Sieghardt 1990). Lead (Pb), cadmium (Cd), arsenic (As), and mercury 
(Hg) are particularly noteworthy for their toxicity levels, with rankings of first, sixth, third, 
and second, respectively, according to the US Agency for Toxic Substances and Disease 
Registry (ATSDR). The contamination of heavy metals represents a burgeoning issue on 
local, regional, and global scales, with elevated concentrations in aquatic and terrestrial 
ecosystems acting as ecological hazards (Nazemi 2012; Veschasit, Meksumpun, and 
Meksumpun 2012). While certain heavy metals such as manganese (Mn), iron (Fe), 
copper (Cu), zinc (Zn), molybdenum (Mo), and cobalt (Co) are essential for organismal 
growth within normal ranges (Ernst 2006), excessive amounts can severely impact 
human health (Gavrilescu 2004). 

Certain heavy metals such as cadmium (Cd), uranium (U), lead (Pb), mercury (Hg), 
thallium (Tl), silver (Ag), and chromium (Cr) consistently exhibit toxicity to organisms. 
Non-heavy metals like arsenic (As) and selenium (Se) are categorized as “metalloids” 
(Ernst 2006). Additionally, less common metallic contaminants, including aluminum (Al), 
cesium (Cs), cobalt (Co), manganese (Mn), molybdenum (Mo), strontium (Sr), and 
uranium (U), contribute to environmental contamination (Reena Singh et al. 2011). 
Among these toxic heavy metals, mercury (Hg) uniquely exists in liquid form and 
adversely affects vegetation (Iv and Susana 2015). Its liquid state facilitates easy 
dissolution in water, leading to contamination. To combat this, aquatic plants like Lemna 
minor or Salvinia species absorb mercury, thereby purifying water (Sitarska, Traczewska, 
and Filyarovskaya 2016). Conversely, terrestrial plants seem less affected by mercury 
and its compounds (Boening 2000), suggesting the absence of a specialized “Hg-flora” 
(Bothe and Słomka 2017). 

Contamination by toxic heavy metals, radionuclides, metalloids, and organic pollutants, 
exacerbated by improper industrial waste disposal, escalates pollution levels in 
ecosystems and risks human health (Gadd 2009). Industries (e.g., electroplating and 
mining) discharge aqueous effluents that contain significant concentrations of heavy 
metals, like uranium, mercury, cadmium, and copper, which harm the environment when 
untreated (Gavrilescu 2004). Biological methods alongside physical and chemical 
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techniques are utilized for sewage and water purification, employing microbial activities 
to modify inorganic toxins and degrade organic pollutants (Gadd 2009). While 
conventional technologies like ion exchange and chemical precipitation are used, they 
are often inefficient and costly (Gavrilescu 2004). 

Heavy metal exposure can induce DNA damage, oxidative stress, and cell death, 
elevating the risk of cancer and related diseases. Antioxidative phytochemical 
compounds and phytochelatin molecules are employed to counter heavy metal-induced 
cancer (Kim, Kim, and Seo 2015). The toxicity levels of heavy metals such as nickel (Ni), 
copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg), lead (Pb), and arsenic (As) are 
assessed by WHO (World Health Organization) and EPA (United States Environmental 
Protection Agency) standards (Kumar et al. 2017). These metals exhibit various adverse 
effects on human health; for instance, zinc affects reproductive system activity, protects 
against cadmium-induced liver damage, and induces DNA damage and cancer. Copper 
induces metallothionein (MT) production and conjugation to metallothionein-like proteins 
(MTLP), while cadmium causes placental abnormalities, testicular apoptosis, and MT 
induction. Mercury induces embryotoxic and teratogenic effects, disrupts homeostasis, 
leads to behavioral abnormalities and learning disabilities, and mimics estrogen. Lead 
decreases sperm count and motility and can lead to brain tumors and alterations in MT 
isoform gene expression (Kumar et al. 2017). 

The review comprehensively examines methodologies to mitigate heavy metal 
contamination in ecosystems. It explores various physical methods, including mechanical 
and ultrasonic soil washing, ex-situ electrokinetic removal, chelating materials, and soil 
amendments. Additionally, the paper explores biological strategies involving 
microorganisms, algae, and natural organic products alongside innovative techniques 
such as phytoextraction and phytoremediation, emphasizing environmentally friendly 
solutions to heavy metal pollution. The review also discusses biotechnological and 
nanotechnological approaches, highlighting their potential contributions to remediation 
efforts. Moreover, it investigates integrating multiple techniques to foster synergistic 
approaches for more efficient heavy metal removal. Lastly, the study explores the 
emerging role of artificial intelligence in heavy metal remediation processes, aiming to 
provide insights into the advancements and challenges within this rapidly evolving field. 
 
2. SOURCES OF HEAVY METALS IN CONTAMINATED SOILS 

The origins of heavy metals in contaminated soils are multifaceted, stemming from natural 
processes and human activities. Natural sources encompass geological phenomena 
such as sedimentary rocks, volcanic eruptions, soil formation, and the weathering of 
rocks. Conversely, anthropogenic sources arise from industrial operations, mining 
activities, agricultural practices, and domestic waste discharges. Human endeavors, 
particularly in industry, agriculture, and mining, play a significant role in introducing heavy 
metals like lead (Pb), chromium (Cr), arsenic (As), zinc (Zn), cadmium (Cd), copper (Cu), 
mercury (Hg), and nickel (Ni) into soil environments. These metals accumulate in soils 
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due to disruptions to nature’s geochemical cycles caused by human interference, posing 
risks to human health, plant and animal life, ecosystems, and various environmental 
components. Heavy metals can enter soil through multiple pathways, including emissions 
from industrial zones, discharge from mining activities such as mine tailings, improper 
disposal of metallic wastes, utilization of fertilizers and pesticides containing heavy metal 
residues, application of sewage sludge, and atmospheric deposition (Alengebawy et al. 
2021; Wuana and Okieimen 2011; Zwolak et al. 2019). A comprehensive understanding 
of the diverse sources of heavy metals in contaminated soils is paramount for developing 
effective remediation and management strategies. By grasping the intricacies of heavy 
metal contamination, stakeholders can implement targeted measures to mitigate 
associated risks to ecosystems and human health, safeguarding environmental quality 
and promoting sustainable land use practices. 
 
3. HEAVY METALS IN ECOSYSTEM/ FOOD CHAIN 

Heavy metals infiltrate ecosystems and food chains through various sources stemming 
from human activities and natural occurrences. Anthropogenic sources, such as industrial 
operations, mining activities, irrigation of crop fields with industrial water, and agricultural 
practices, are significant contributors to heavy metal pollution. Conversely, natural 
sources include processes like wind erosion of soil, forest fires, volcanic eruptions, 
weathering of rocks, biogenic processes, and wildfires, all of which introduce heavy 
metals into the environment (Gall et al. 2015; Hama Aziz et al. 2023). Soil and common 
vegetables in daily consumption, including parsley, coriander, cress, beet leaf, amaranth, 
bitter leaf, garden egg leaf, and fluted pumpkin, often exhibit high levels of heavy metals 
such as Pb, Zn, Cr, As, and Cd. Among these, Cd stands out as particularly mobile and 
readily absorbed by crops from the soil, while arsenic tends to accumulate at high 
concentrations in soil (Jan et al. 2011; Karimi, Ghaderian, and Schat 2013; Nazemi 2012). 
Research by Jan et al. (2011) indicates higher concentrations of Zn, Mn, and Cu in older 
individuals’ blood than in younger people, suggesting the accumulation of heavy metals 
over time (Jan et al. 2011). 

Heavy metals traverse the food chain via multiple pathways, including ingestion, 
inhalation, dermal contact, and dietary intake of crops grown in contaminated soils (C.R. 
et al. 2022; Hama Aziz et al. 2023; Liu, Li, and He 2022). Industrial activities, notorious 
for releasing heavy metal-contaminated wastewater, contribute to severe water pollution, 
contaminating aquatic ecosystems and the food chain. Non-point source pollution from 
agricultural and industrial activities significantly contributes to heavy metal presence, 
affecting environmental elements like cadmium, nickel, lead, zinc, arsenic, and mercury. 
Additionally, heavy metals can originate from natural sources like atmospheric deposits 
and be transported to the earth’s surface through precipitation (Briffa, Sinagra, and 
Blundell 2020). Heavy metal contamination in soil, particularly in agricultural settings, 
poses significant environmental and health concerns. Excessive accumulation of heavy 
metals in agricultural soils leads to elevated uptake by food crops, posing potential health 
risks to humans. Consumption of heavy metal-contaminated food crops represents a 
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significant pathway for human exposure (Nyiramigisha, Komariah, and Sajidan 2021; 
Rashid et al. 2023). Thus, it is imperative to identify primary contributors to heavy metal 
contamination and devise effective strategies and policies to manage and mitigate their 
adverse effects. 
 
4. PHYSICAL METHODS 

Mechanical and ultrasonic soil washing 

Mechanical and ultrasonic soil washing represent two physical methods to remove heavy 
metals from soil. A comparative study to determine optimal operating conditions for full-
scale soil washing processes at heavy metal-contaminated sites observed that 
mechanical and ultrasonic soil washing processes generally met stringent regulatory 
standards regarding final heavy metal concentrations. However, the removal efficiencies 
of heavy metals were notably higher in ultrasonic/mechanical soil washing compared to 
mechanical soil washing alone. For instance, the removal efficiency of copper (Cu) 
through mechanical soil washing was recorded at 39.4%. In contrast, combining 
ultrasonic and mechanical soil washing yielded a significantly enhanced removal 
efficiency of 66.8% for Cu. This enhancement suggests that ultrasound application could 
substantially improve the removal efficiencies of heavy metals, particularly under less 
favorable conditions for mechanical processes. Additionally, the quantity of washing liquid 
utilized also influenced the removal efficiencies of heavy metals in soil when employing 
these physical methods (Park and Son 2017). 

Ex situ electrokinetic removal of heavy metals 

Electrokinetic removal is a promising technology for addressing heavy metal 
contamination in soils, offering an economical and highly effective approach to 
remediation (Lee et al. 2021). This method can target various pollutants in low-
permeability soil, mud, sludge, and marine dredging. The process involves the application 
of electric fields to mobilize charged contaminants, including heavy metals, towards 
electrodes embedded in the soil. By periodically reversing the polarity of these electrodes, 
the direction of contaminants is alternated, facilitating their movement through treatment 
zones. Electrokinetic remediation has demonstrated efficacy in situating contaminated 
soils with organic species (USEPA 2018). 

Several strategies have been explored to augment the effectiveness of electrokinetic 
removal of heavy metals. Integration with bioleaching presents a promising avenue, as it 
addresses limitations inherent in individual methods. Through this integration, bacteria 
can convert insoluble metal sulfides to sulfates, enhancing their solubility and subsequent 
transport via electromigration (Narenkumar et al. 2023). Acidification through the addition 
of acidic electrolytes such as lactic acid and acetic acid, along with the use of complexing 
agents like EDTA and citric acid, has proven effective in increasing desorption, solubility, 
mobility, and ultimately, the removal efficiency of heavy metals. Careful selection of 
desorption and mobility enhancement reagents based on soil characteristics and heavy 
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metal species is crucial. Additionally, modifications such as implementing ion exchange 
membranes (IEM) and electrode polarity exchange have been adopted to prevent the 
diffusion of hydroxide ions from the cathode, thereby improving heavy metal removal 
efficiency (Cai et al. 2022). 

Overall, electrokinetic removal of heavy metals represents a promising technology for 
remediating polluted soils and sediments. Its efficacy can be further enhanced through 
various methods, including integration with bioleaching, using acidic electrolytes and 
complexing agents, and adopting ion exchange membranes and electrode polarity 
exchange techniques. 
 
5. CHEMICAL METHOD 

By using chelating materials 

Chelating agents can desorb toxic metals from soil solid phases by forming robust water-
soluble complexes. Once these complexes are formed, plants can remove them from the 
soil through enhanced phytoextraction or washing techniques. In phytoextraction 
facilitated by chelants, the chelant is initially applied to the soil, where it desorbs metals 
from the soil matrix. The mobilized metals then migrate to the rhizosphere, where they 
are taken up by plant roots (Tahmasbian and Safari Sinegani 2014). The concentrations 
of bio-available metals in the soil solution are predominantly influenced by the properties 
of the soil and the chelant applied (Luo, Shen, and Li 2005; Tandy et al. 2004). It is crucial 
to carefully select the chelant, determine its quantity, and devise appropriate application 
processes to minimize its impact on soil microorganisms and prevent discharge into 
groundwater (Evangelou, Ebel, and Schaeffer 2007; Luo, Shen, and Li 2007). 

Ethylene Diamine Tetra Acetic acid (EDTA) emerges as one of the most potent and 
commonly utilized chelating agents, capable of forming complexes with numerous metal 
contaminants in the natural environment. Studies have shown that the application of 
EDTA enhances the efficiency of emergent wetland plant species such as Typha sp. and 
floating wetland macrophytes like Pistia sp., Azolla sp., Lemna sp., Salvinia sp., and 
Eichhornia sp. in the phytoremediation of Pb and copper (Dipu, Kumar, and Thanga 
2012). However, conventional complexing agents exhibit undesired traits such as 
persistence or slow environmental transformation and the potential remobilization of toxic 
metal ions and radionuclides from sediments and soils. Therefore, these agents must be 
replaced with chelating agents with improved biodegradability (Reinecke et al. 2000). 

Most amino polycarboxylic acids, such as EDTA, IDA, and DTPA, resist conventional 
biological and physicochemical methods. EDTA, for example, is more efficient than 
ethylenediamine disuccinic acid (S, S)-EDDS in extracting Pb and Cd, while (S, S)-EDDS 
is more effective in extracting Cu and Zn. Combining EDTA with (S, S)-EDDS has been 
shown to produce higher extraction efficiency (i.e., a synergy effect) in the phytoextraction 
of Cu, Pb, Zn, and Cd compared to the application of either chelant alone (Luo et al. 
2005). 
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Studies by Gupta and Sinha (2006) demonstrated varying metal extraction efficiencies 
among different metal extractants from tannery sludge amendment, with EDTA exhibiting 
the highest efficiency, followed by DTPA, NH4NO3, NaNO3, and CaCl2 (Gupta and Sinha 
2006). Furthermore, Dede et al. (2012) conducted a pot experiment to investigate the 
influence of elemental sulfur, gypsum, and EDTA on the uptake of heavy metals by 
Brassica juncea from sewage sludge. The addition of sulfur resulted in acidification of the 
sludge, leading to a decrease in pH, and applications of EDTA and sulfur notably 
increased copper and Pb concentrations in the plant. Overall, elemental sulfur was a more 
effective amendment for phytoextraction of heavy metals from sewage sludge (Dede, 
Ozdemir, and Hulusi Dede 2012). 

Soil Amendments 

Various organic and inorganic compounds have been identified for their ability to 
immobilize heavy metals, preventing their uptake by plants and subsequent entry into the 
food chain (Walker et al. 2003). Table 1 displays different soil amendments, their sources, 
and metals that become immobilized.  

Table 1: Different soil amendments, their sources, and metals that become 
immobilized (Guo, Zhou, and Ma 2006) 

Material Soil Amendments Source Immobilizing Heavy metals 

Organic Xylogen Paper Mill Wastewater Zn, Hg, Pb 

Cattle Manure Cattle farm Cd 

Poultry Manure Poultry farm Cd, Zn, Pb, Cu 

Bagasse Sugar Cane Pb 

Inorganic Phosphate salt Fertilizer Plant Cd, Zn, Pb, Cu 

Hydroxyapatite Phosphorite Cd, Zn, Pb, Cu 

Slag Thermal Power Plant Cd, Zn, Pb, Cr 

Fly ash Thermal Power Plant Cd, Zn, Pb, Cu, Cr. 

Lime Lime Factory Cd, Cu, Ni, Pb, Zn 

 
6. BIOLOGICAL METHODS  

Biosorption encompasses several mechanisms, including ion exchange, chelation, 
adsorption, and diffusion through cell walls and membranes. These mechanisms vary 
depending on the species employed, the biomass’s source and treatment, and the 
solution’s chemistry. Bioremediation, derived from “bio” (living) and “remediation” (to fix 
or cure), is a subset of biotechnology that harnesses bacteria and other microorganisms 
to mitigate pollution (Gavrilescu 2004). 

By using microorganisms 

Bioremediation, employing microorganisms, has emerged as an environmentally friendly, 
cost-effective, and efficient approach to restoring contaminated environments 
(Hrynkiewicz and Baum 2014). Microorganisms play an indirect yet crucial role in 
supporting the growth of phytoaccumulation plants, thereby aiding in the remediation of 
heavy metals (Jing, He, and Yang 2007; Zhuang et al. 2007). Specifically, plant growth-
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promoting rhizobacteria (PGPR), closely associated with plant roots, have garnered 
attention for their ability to enhance plant growth and development in heavy metal-
contaminated soils. 

PGPR encompasses a diverse group of soil bacteria capable of ameliorating the toxic 
effects of heavy metals on plants and promoting their growth and nutrition. These bacteria 
facilitate plant growth through nitrogen fixation, production of phytohormones and 
siderophores, and transformation of nutrient elements (Koo and Cho 2009). In areas such 
as mine tailings contaminated with heavy metals, PGPR is introduced to plant seeds 
during sowing to bolster plant growth (Grandlic, Palmer, and Maier 2009). Studies have 
shown that PGPR application not only enhances plant growth and yield but also mitigates 
metal toxicity in crops such as Cicer arietinum, Vigna radiata, and Pisum sativum (Gupta 
et al. 2004; Wani, Khan, and Zaidi 2008). 

Furthermore, PGPR plays a pivotal role in enhancing phytoremediation efficiency, 
particularly in the presence of metals like cadmium. Certain bacteria can reduce 
Chromium (VI) enzymatically, aiding in chromium reduction (Kanmani, Aravind, and 
Preston 2012). Untreated wastewater contaminated with heavy metals released into 
aquatic systems can accumulate metals in soil and water bodies, adversely affecting 
aquatic organisms and potentially posing health risks to humans (Davies and Uyi 2006; 
Fatoki, Lujiza, and Ogunfowokan 2002). However, the biosorption process, wherein 
nonliving biomass passively binds heavy metals from aqueous solutions, offers a 
promising avenue for metal removal (Kumar JI 2012). 

Compared to conventional separation techniques, using microorganisms for metal 
contamination reduction offers biomaterial reusability, low operating costs, improved 
selectivity for specific metals, and shorter operation times (Srinath et al. 2002). As a novel 
technology, the biosorption process holds promise for refining treatment in shallow water 
bodies (Kumar, Soni, and Kumar 2006). 

By Using Algae 

Algae play a significant role in removing heavy metals from aquatic systems through 
various mechanisms such as sedimentation, flocculation, absorption, ion exchange, 
complexation, precipitation, oxidation/reduction, microbiological activity, and uptake. 
Microalgae, in particular, employ two primary mechanisms for heavy metal removal: 
metabolism-dependent uptake into their cells at low concentrations and non-active 
adsorption through biosorption (Mitra et al. 2012). Algae possess several characteristics 
that render them ideal candidates for selective removal and concentration of heavy 
metals. These include high tolerance to heavy metals, the ability to grow autotrophically 
and heterotrophically, large surface area/volume ratios, phototaxy, expression of 
phytochelatins, and potential for genetic manipulation. 

Macroalgae have also been extensively utilized as biomonitors of metal availability in 
marine systems due to their capacity to accumulate metals within their tissues. 
Chlorophyta and Cyanophyta, in particular, exhibit hyper-absorbent and 
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hyperaccumulating properties for elements like arsenic and boron, effectively reducing 
water pollutant levels (Ben Chekroun and Baghour 2013). Certain algal species have 
been observed to convert mercuric or phenylmercuric ions into metallic mercury, which is 
then volatilized out of the cell and the solution. For instance, the blue-green algae 
Phormidium demonstrates remarkable hyperaccumulation capabilities for heavy metals 
such as cadmium, zinc, lead, nickel, and copper (Ben Chekroun and Baghour 2013). 
Table 2 displays microorganisms that absorb heavy metals.  

Table 2: Microorganisms that absorb the heavy metals 

Organism Species Metal Ion References 

Bacteria 

Arthrobacter sp.  Copper Cu(II) (Hasan and Srivastava 2009) 

Enterobacter sp. J1 Copper Cu(II) (Parungao 2007) 

Pseudomonas fluorescence  Chromium Cr(VI) (Uzel and Ozdemir 2009) 

Pseudomonas sp  Chromium Cr(VI) (Ziagova et al. 2007) 

Pseudomonas putida Zinc (Zn) 
(Green-Ruiz, Rodriguez-Tirado, and 
Gomez-Gil 2008) 

Bacillus jeotgali  Zinc (Zn) (Green-Ruiz et al. 2008) 

E. coli Nickel Ni(II) (Quintelas et al. 2009) 

Pseudomonas fluorescence  Nickel Ni(II) (Uzel and Ozdemir 2009) 

Enterobacter sp. J1  Cadmium Cd(II)  (Quintelas et al. 2009) 

 
 
 Algae 

Ulva lactuca sp.  Cadmium Cd(II) (Bulgariu et al. 2013) 

Sargassum sp.  Cadmium Cd(II) (Bulgariu et al. 2013) 

Spirulina platensis  Copper Cu(II) (Bulgariu et al. 2013) 

Spirogyra sp.  Lead (Pb) (Gupta and Rastogi 2008) 

Sargassum muticum  Zinc (Zn) 
(Çelekli, Yavuzatmaca, and Bozkurt 
2010) 

Fungi 

Penicillium chrysogenum  Nickel (Ni) (64) 

 Copper (Cu) 
(Infante J, De Arco R, and Angulo M 
2014) 

Penicillium purpurogenum  Chromium (Cr) 
(Katsumata et al. 2003; Safarikova, 
Maderova, and Safarik 2009) 

Aspergillus niger  Lead (Pb) (Zeng et al. 2015) 

By using natural and organic products  

Replacing conventional adsorbents with natural sorbents has gained considerable 
attention as an alternative due to their availability in the environment and economic 
feasibility (Babel and Kurniawan 2003). Materials such as farmyard manure (FYM), 
sawdust, rice husk, and other agricultural or industrial by-products have emerged as 
potential low-cost sorbents.  

These materials, often disposed of at the end of their lifecycle, can be repurposed for 
heavy metal remediation purposes, given their abundance and availability. The organic 
substances present in soil significantly influence the absorption and translocation of 
heavy metals, leading to their accumulation in organic horizons and peat (Kabata-Pendias 
2001). 
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Studies have shown that compost or vermicompost amendments in soil can decrease the 
concentration of heavy metals like lead and copper in plants such as potato peel and 
tubers (Angelova et al. 2010). Metal removal and stabilization can also be achieved 
through compost, biosolids, recycled paper waste, and agricultural mineral amendments 
(Jones and Healey 2010; Paulose et al. 2007). These amendments reduce the risk of 
metal exposure to humans and biota and mitigate metal availability in soil, water, or air 
(O’Day and Vlassopoulos 2010). 

Natural products like sawdust and rice husk act as binding agents, reducing the uptake 
of heavy metals from contaminated sites (Wan Ngah and Hanafiah 2008). Sawdust and 
rice husk have been demonstrated to act as biosorbents in hydroponic systems, reducing 
the availability of metals like cadmium (Subhan 2011).  

The reduction in metal availability is attributed to the basic nature of complex compounds 
present in sawdust and rice husk, such as cellulose, hemicellulose, lignin, mineral ash, 
and tannins, which actively participate in ion exchange processes (Rafatullah et al. 2009). 

Additionally, the application of fly ash in contaminated soil has been found to significantly 
reduce the availability of heavy metals by modifying their chemical speciation into less 
available forms. 

Experiments involving the growth of corn in soil amended with fly ash stabilized sludge 
demonstrated a decrease in the availability of metals like copper, zinc, nickel, and 
cadmium, along with an increase in corn biomass. This chemical modification of metal 
speciation renders them less available for plant uptake, thereby reducing potential risks 
associated with heavy metal contamination (Su and Wong 2004). 
 
7. PHYTOEXTRACTION AND PHYTOREMEDIATION: GREEN SOLUTIONS FOR 

HEAVY METAL CONTAMINATION  

Naturally grown hyperaccumulator plants can mitigate metal contamination in agricultural 
land systems. These plants can accumulate, transfer, and stabilize heavy metals from 
contaminated soils (Garbisu et al. 2002; Jadia and Fulekar 2009).  

Phytoaccumulator plants accumulate metals in their shoots and exhibit high tolerance to 
heavy metals (Sarma 2011). However, many hyperaccumulator plants are slow-growing 
and produce low biomass. Phytoremediation involves using specific types of plants to 
decontaminate soil or water by either immobilizing metals in the rhizosphere or 
translocating them into their aerial parts.  

Various plant families, including Asteraceae, Brassicaceae, Caryophyllaceae, 
Cyperaceae, Cunouniaceae, Fabaceae, Flacourtiaceae, Lamiaceae, Poaceae, 
Violaceae, and Euphorbiaceae, have demonstrated remediation properties (Sarma 
2011). 
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For instance, Myriophyllum spicatum and Ceratophyllum demersum effectively remove 
lead, zinc, and copper. Batch studies have shown that these plants conform well to the 
Langmuir Model, achieving maximum adsorption capacities (qmax) for each metal. M. 
spicatum exhibited maximum adsorption capacities of 10.37 mg/g for Cu^2+, 15.59 mg/g 
for Zn^2+, and 46.49 mg/g for Pb^2+, while C. demersum showed capacities of 6.17 mg/g 
for Cu^2+, 13.98 mg/g for Zn^2+, and 44.8 mg/g for Pb^2+. M. spicatum demonstrated a 
better adsorption capacity than C. demersum for each metal tested (Keskinkan et al. 
2007). Table 3 presents a list of Phytoaccumulator plants and their respective absorbed 
metals. 

Table 3: List of Phytoaccumulator plants and their respective absorbed metals 

Phytoaccumulator Plant Metal Absorb References 

Myriophyllum spicatum Pb, zinc, and copper (Keskinkan et al. 2007) 

Ceratophyllum demersum Pb, zinc, and copper (Keskinkan et al. 2007) 

Cancapapaya Wood  Hg(II) (Uslu and Tanyol 2006) 

Oryza sativa husk Pb(II) (Mapolelo, Torto, and Prior 2005) 

Sawdust(Acacia arabica) Pb(II), Hg(II), Cr(IV) (Sousa, Cebolla, and de Lorenzo 1996) 

Rhizofiltration 

Rhizofiltration involves using terrestrial and aquatic plants to absorb, concentrate, and 
precipitate contaminants from polluted aqueous sources with low contaminant 
concentrations in their roots. This method can be employed to partially treat industrial 
discharge, agricultural runoff, or acid mine drainage, and it is effective for pollutants such 
as lead, cadmium, copper, nickel, zinc, and chromium, primarily retained within the roots 
(Chaudhry et al., 1998; Environmental Protection Agency, 2000). 

One of the advantages of rhizofiltration is its versatility, as it can be applied in situ and ex-
situ, and a wide range of plant species, not just hyperaccumulators, can be utilized. 
Various plants, including sunflower, Indian mustard, tobacco, rye, spinach, and corn, have 
been studied for their ability to remove lead from effluent, with sunflowers showing 
exceptionally high efficiency. Indian mustard has also effectively removed lead over a 
wide concentration range (4 – 500 mg/l) (Raskin and Ensley 1999). 

Field tests of rhizofiltration have demonstrated its effectiveness in treating uranium-
contaminated water with concentrations ranging from 21 to 874 ug/l. In a study by 
Dushenkov et al. (1997), the treated uranium concentration was reported to be < 20 ug/l 
before discharge into the environment (Dushenkov et al. 1997). This result highlights the 
potential of rhizofiltration as a practical and efficient method for water remediation. 

Phytostabilisation  

Phytostabilization is a remediation method primarily used for soil, sediment, and sludges, 
relying on the roots’ ability to limit contaminant mobility and bioavailability in the soil (Itrc 
2009). This process can occur through sorption, precipitation, complexation, or metal 
valence reduction. 
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The primary goal of phytostabilization is to reduce water percolation through the soil 
matrix, thereby minimizing the formation of hazardous leachate and preventing soil 
erosion and the spread of toxic metals to other areas. A dense root system stabilizes the 
soil and prevents erosion (Raskin and Ensley 1999). 

Phytostabilization is highly effective when rapid immobilization of contaminants is 
necessary to protect groundwater and surface water and when biomass disposal is not 
required. However, one major drawback is that the contaminants remain in the soil, 
necessitating regular monitoring. 

Phytoextraction  

Phytoextraction, or phytoaccumulation, is a practical approach to remove contamination 
primarily from the soil without damaging its structure and fertility (Environmental 
Protection Agency, 2000). This method involves plants absorbing, concentrating, and 
precipitating toxic metals and radionuclides from contaminated soils into their biomass. 
Phytoextraction is particularly suitable for diffusely polluted areas where pollutants occur 
at relatively low concentrations and are superficially distributed (Rulkens, Tichy, and 
Grotenhuis 1998). 

Two basic strategies of phytoextraction have been developed: chelate-assisted 
phytoextraction or induced phytoextraction, where artificial chelates are added to increase 
metal mobility and uptake, and continuous phytoextraction, where metal removal depends 
on the natural ability of the plant to remediate, with control over the number of plant growth 
repetitions (Salt et al. 1995). 

The discovery of hyperaccumulator species has further advanced this technology. Yet 
limitations such as slow growth, shallow root systems, small biomass production, and 
challenges in final disposal constrain the use of hyperaccumulator species (Brooks et al. 
1998; Cunningham and Ow 1996; Ghosh and Singh 2005). 

Phytovolatilization  

Phytovolatilization involves plants absorbing contaminants from the soil, transforming 
them into volatile forms, and releasing them into the atmosphere through transpiration 
(Ghosh and Singh 2005). This method has been primarily used for removing mercury, 
where the mercuric ion is transformed into less toxic elemental mercury.  

However, a disadvantage of phytovolatilization is that the released contaminants may be 
recycled by precipitation and redeposited into the ecosystem (By and Henry n.d.). Some 
plants growing in high selenium environments can also produce volatile selenium 
compounds (Bañuelos, Zambrzuski, and Mackey 2000). 

Phytovolatilization has also successfully removed tritium, a radioactive isotope of 
hydrogen, by decay to stable helium (Dushenkov 2003). 
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Phytodegradation  

Phytodegradation involves the breakdown of organic contaminants taken up by plants 
through metabolism, leading to their transformation, breakdown, stabilization, or 
volatilization. Plant enzymes can break down and convert various organic contaminants, 
such as ammunition wastes, chlorinated solvents, and herbicides, into simpler molecules 
incorporated into plant tissues. 

Rhizodegradation, on the other hand, involves the breakdown of organics in the soil 
through microbial activity in the root zone (rhizosphere), albeit at a slower rate than 
phytodegradation. Microorganisms like yeast, fungi, and bacteria break down organic 
substances like fuels and solvents. 

All phytoremediation technologies can be used simultaneously; nevertheless, the 
effectiveness of metal extraction depends on the soil’s bioavailable fraction (Black 1995; 
Chaudhry et al. 1998; Ghosh and Singh 2005). 
 
8. BIOTECHNOLOGICAL APPROACH 

By using biotechnologically modified plants 

Biotechnological tools, including genetic engineering, offer promising avenues for 
enhancing the efficacy of plants in removing metals from the environment. Through 
genetic engineering, the overall functionality of plants can be modified, augmenting their 
remediation capabilities. By incorporating new genotypes and phenotypes obtained from 
metal-hyperaccumulating plants and microbes, the remediation potential of plants can be 
significantly increased (James and Strand 2009). 

Transgenic plants engineered with specific traits may also offer safer options for 
phytoremediation purposes (Van Aken 2008). Researchers have explored various 
genetic modifications to enhance plant metal tolerance and accumulation. For instance, 
transferring the bacterial merAB operon to tobacco chloroplasts rendered the plants more 
resistant to highly toxic organic mercury (Heaton et al. 2005). 

Similarly, integrating metallothionein genes into plant genomes has been shown to confer 
enhanced tolerance to high metal concentrations. Introduction of the yeast 
metallothionein CUP1 gene into tobacco plants has increased the uptake of metals like 
copper and cadmium, thus enhancing phytoextraction capabilities (M. Czako, X. Feng, Y. 
He, D. Liang, R. Pollock 2006; Peron n.d.). 

Genetic engineering also allows transferring specific genes associated with metal binding 
and detoxification mechanisms. For instance, the partial peptides from the Thlaspi heavy 
metal ATPase (TcHMA4) protein have been identified for their ability to confer high levels 
of cadmium tolerance and hyperaccumulation in yeast. 

Expression of TcHMA4 in higher plants could potentially enhance their metal tolerance 
and phytoremediation potential. Moreover, genes encoding enzymes such as merB, 
which degrade methylmercury to less toxic forms, have been introduced into plants like 
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tobacco, resulting in increased resistance to methylmercury and enhanced mercury 
accumulation (Nagata et al. 2010). 

Additionally, introducing a gene for mercuric reductase into tobacco and Arabidopsis 
plants enabled the conversion of ionic mercury to less toxic metallic mercury, facilitating 
its volatilization (Meagher and Bizily 2000). 

These biotechnological approaches, along with others such as biomineralization, 
biosorption, phytostabilization, hyperaccumulation, and rhizoremediation, offer versatile 
strategies for metal remediation. Their integration and cooperation are essential for 
advancing environmental cleanup efforts (Mani and Kumar 2014). 
 
9. NANOTECHNOLOGICAL APPROACH 

By using nanotechnology 

Although primarily associated with animal science and medical research, nanotechnology 
holds significant potential in plant science and environmental remediation. In plant 
science research, nanotechnology can aid in analyzing plant genomics and gene function 
and improving crop species (Monica and Cremonini 2009). Moreover, the application of 
nanotechnology for contaminant remediation shows promise in purifying air and water 
resources by utilizing nanoparticles as catalysts and sensing systems (Fulekar, Pathak, 
and Kale 2014). 

Researchers have found that nanostructured materials can be effective adsorbents or 
catalysts to remove toxic substances from wastewater, air, and soil (Monica and 
Cremonini 2009; Shen et al. 2009). The small particle size of nanoparticles (1–100 nm) 
enables their effective transport by groundwater flow, making them versatile remediation 
tools (Masciangioli and Zhang 2003).  

Multi-walled carbon nanotubes (CNTs) have been successfully used for the removal of 
heavy metals such as Copper(II), Lead (II), Cadmium(II), and Zinc(II) from aqueous 
solutions (Abdel Salam 2013; Yu et al. 2014). Carbon nanoparticles have also 
demonstrated exceptional adsorption properties, significantly reducing metal 
contamination from soil and water systems (Rathor, Adhikari, and Chopra 2013). 

Additionally, nanoparticles derived from plants like Euphorbia macroclada have shown 
potential for removing and detoxifying metals, with significant reductions observed in 
concentrations of metals like Lead, Zinc, Copper, Cadmium, and Nickel (Mohsenzadeh 
and Rad 2011). Similarly, zero-valent iron nanoparticles have been utilized to remove 
Chromium from contaminated soil, achieving a remarkable 99% removal rate (Ritu Singh, 
Misra, and Singh 2011). Nanotechnology offers innovative approaches for environmental 
remediation, with the potential to address challenges related to pollutant removal and 
detoxification effectively. Continued research in this field holds promise for developing 
sustainable solutions to environmental pollution. Table 4 compares the advantages and 
disadvantages of different methods used for metal remediation. 
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Table 4: Comparison between the advantages and disadvantages of different methods used for metal 
remediation 

Methods Treatment Detail and results Advantages Disadvantages References 

Physical 

Mechanical soil 
washing 
 

Reduction in metals and 
contamination in soil 

Significant volume 
reduction in contaminated 
soil 

External chemicals are used 
(Park and Son 
2017; Son et al. 
2011)  

Ultrasonic soil 
washing 

Reduction in metals and 
contamination in soil 

Significant volume 
reduction in contaminated 
soil. Green method and 
external chemicals are 
used 

Expensive and not 
applicable for practical use 

(Park and Son 
2017; Son et al. 
2011) 

Ex-situ 
electrokinetic 
removal of heavy 
metals 

Reduction in metals and 
contamination in soil 

This method is applicable 
to different metals 

Any heterogeneity of the soil 
body decreases the 
effectiveness of the method, 
and considerable 
acidification of the 
remediated soil is a side 
effect of this method 

(Iman 
Tahmasbian 
2012; Kim et al. 
2002) 

Chemical 

Chelating materials Reduce the mobility of Pb and Cu 

Desorption of metals and 
effective amendment for 
phytoextraction of heavy 
metals 

Different chemicals are used 
(Dipu et al. 
2012) 

Soil Amendments 
Reduce the mobility of Cd, Cu, Ni, 
Pb, Zn, Hg, and Cr. 

Natural sources are used 
Change the physic-chemical 
properties of soil  

(Guo et al. 
2006) 

Biological 
Approach 

Microorganisms 
Removes the metal contaminants 
as a result of sorption and/or 
transformation 

Removes contaminants as 
a result of sorption and/or 
transformation. Soil retains 
its properties and could be 
replaced on the reclaimed 
site 

Construction of a special 
installation is required. Large 
amounts of waste (solid, 
liquid) are generated 

(Singh and 
Prasad 2015) 

Algae and fungi 

Heavy metal is removed from 
aquatic systems by sedimentation, 
flocculation, absorption and 
cations and anion exchange, 
complexation, precipitation, 
oxidation/ 
reduction, microbiological activity, 
and uptake 

Microalgae remove heavy 
metals directly from 
polluted water 

May cause disease 
(Mitra et al. 
2012)  



Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/ 
Journal of Xi'an Shiyou University, Natural Sciences Edition 

ISSN: 1673-064X 
E-Publication: Online Open Access 

Vol: 67 Issue 05 | 2024 
DOI: 10.5281/zenodo.11257296 

 

May 2024 | 100 

Natural sorbents Biosorbent in hydroponic system 
More stable  economical 
and reduces the risk of 
exposure to humans  

Not Found 
(Kabata-
Pendias 2001) 

Phytoreme
diation 

Rhizofiltration. 
Phytostabilization, 
Phytodegradation, 
Phytoextraction, 
and  
Phytovolatilization 

Contaminants are absorbed into 
roots and precipitated in the roots’ 
area. Contaminants are picked up 
by the roots of plants and 
transported to their overground 
parts, then removed together with 
the crops. Uptake and 
transpiration of such elements by 
plants. The element is taken up by 
plant roots, transported through 
the xylem, and is finally released 
to the atmosphere from cellular 
tissues (evaporates or vaporizes) 

Low-cost method. 
Practically no side effects. 
Relatively low costs. The 
method is environmentally 
friendly 

Contaminants are not 
removed from the soil but 
only immobilized. Plants and 
soil require long-term 
monitoring 

(Ghasemi-
fasaei 2012; 
Jiang et al. 
2010) 

Biotechnol
ogical 
Approach 

Biotechnologically 
modified plants 

Transgenic plants removed up to 
6 % Zn and 25 % Cd of the soil 
metal; Tobacco callus showed 
more resistance to methylmercury 
(CH3Hg?) and accumulated more 
mercury from CH3Hg?- containing 
medium 

Transgenic plants might be 
able to contribute to the 
broader and safer 
application of 
phytoremediation 

It may cause toxins and 
reduce the nutritional value 

(Küpper and 
Kochian 2010; 
Nagata et al. 
2010) 

Nanotechn
ological 
Approach 

Use of 
Nanoparticles 

The use of nano-ZVI, bimetallic 
nanoparticles, and emulsified 
zero-valent nanoparticles reduces 
the metal contamination from soil 
and groundwater 

It is very efficient for 
removing metal 

It may cause pollution and 
expensive 

(Ashutosh 
Agarwal and 
Himanshu Joshi 
2010; Xiong et 
al. 2009) 
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10.  INTEGRATION OF MULTIPLE TECHNIQUES: SYNERGISTIC APPROACHES 
FOR HEAVY METAL REMOVAL 

Synergistic heavy metal removal approaches combine chemical flocculation, electrolysis, 
reduction, membrane separation, and adsorption to achieve more effective and efficient 
remediation outcomes (Sun et al. 2020). These integrated processes aim to synergize 
physical, chemical, and biological methods, addressing challenges like cost and in-situ 
treatment failures faced by individual methods. They have gained popularity for their 
reported effectiveness in removing heavy metals from different environmental matrices. 
However, successful implementation requires a thorough understanding of heavy metal 
sources, chemistry, and associated environmental and human health risks (Selvi et al. 
2019). 

Benefits of synergistic approaches include increased efficiency, cost-effectiveness, 
minimal environmental disturbance, and applicability in various settings. They offer 
advantages over individual methods in terms of effectiveness, cost, environmental 
impact, and control over treatment systems (Li et al. 2020; Selvi et al. 2019; Sun et al. 
2020; Tovar-Gómez et al. 2015). For example, integrating electrokinetic processes with 
phytoremediation minimizes environmental disruption while enhancing removal 
efficiency. Similarly, using acidic electrolytes, complexing agents, ion exchange 
membranes, and electrode polarity exchange improves heavy metal desorption, 
solubility, and mobility (Kumar, Dwivedi, and Oh 2022; Selvi et al. 2019). 

Moreover, integrating microorganisms and waste molasses provides an efficient and cost-
effective method for heavy metal removal. Understanding the underlying mechanisms 
allows for better control of treatment systems (Cheah, Cheow, and Ting 2022; Yin et al. 
2019). These integrated approaches hold promise for in-situ operations in various 
settings, including developed areas and agricultural regions, contributing to more 
sustainable and effective remediation strategies for heavy metal pollution. 
 
11. ARTIFICIAL INTELLIGENCE FOR HEAVY METAL REMOVAL 

Artificial Intelligence (AI) is crucial in understanding and remedying heavy metal pollution 
across various environmental settings. AI can assess the most effective methods for 
treating contaminated soil or water by extracting pertinent information from environmental 
reports. In water and wastewater treatment, AI and machine learning algorithms detect 
and remove heavy metals like lead, cadmium, and mercury, which pose risks to human 
health and the environment (Maurya et al. 2024). Integrating AI with techniques such as 
electrokinetic processes and phytoremediation enhances heavy metal removal efficiency. 
For instance, machine learning can identify plastics in water bodies and pinpoint areas 
with high pollution levels, facilitating targeted cleanup efforts (Anon n.d.). AI also aids in 
monitoring water output and detecting spills promptly to prevent further contamination 
(Mal et al. 2018). 
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In agriculture, machine learning identifies microbes, their mechanisms of action, and 
suitable environments, predicting the efficacy of microbial remediation and assessing 
ecological benefits and crop growth post-remediation (Wu and Zhao 2023). Techniques 
like surface-enhanced Raman spectroscopy (SERS) and convolutional neural networks 
(CNNs) analyze spectroscopic data to detect heavy metal ions in water and 
environmental samples (Park et al. 2022; Zhang et al. 2023). AI models trained on SERS 
measurements accurately identify specific heavy metal ions like Pb(NO3)2, showcasing 
balanced accuracy in cross-batch testing (Park et al. 2022). CNN-based methods swiftly 
detect heavy metal ions and their concentrations in water samples (Zhang et al. 2023). 

Optical imaging spectroscopy, coupled with machine learning, detects heavy metals in 
plants, focusing on spectroscopic applications to assess contamination levels (Li et al. 
2022). Deep learning algorithms analyze Raman spectra to identify cadmium-
phytochelatin2 complexes in plants (Mandal et al. 2022). AI predicts heavy metal 
interactions with biochar, a promising area for heavy metal removal research (Wei et al. 
2024). Moreover, AI selectively removes heavy metals from Lanthanide solutions using 
previously prepared graphene oxide-citrate (GO-C) composites (Abu Elgoud et al. 2022). 
These AI-driven advancements promise more effective and sustainable solutions to 
heavy metal pollution. 
 
12. CHALLENGES AND FUTURE PERSPECTIVES IN HEAVY METAL ELIMINATION 

FROM ECOSYSTEMS 

The challenges and future perspectives in heavy metal elimination from ecosystems 
underscore the importance of effective, sustainable, and scalable removal methods while 
mitigating environmental impacts. Leveraging plants and microorganisms for heavy metal 
removal offers effective, economical, and environmentally friendly solutions. 
Bioaccumulation, combined with phytostabilization and phytodegradation, enhances 
heavy metal removal efficiency (Nnaji et al. 2023). Phytoremediation, employing green 
plants to detoxify and render soil reusable, presents numerous advantages over 
conventional methods. However, addressing challenges to make it feasible and scalable 
on a large scale is essential (Thakur et al. 2016). Despite recent advancements in heavy 
metal removal from wastewater, high costs associated with some methods hinder their 
widespread adoption. Exploring cost-effective techniques such as physicochemical 
adsorption with biochar and natural zeolite ion exchangers, along with advanced oxidation 
processes (AOPs), is crucial (Hama Aziz et al. 2023). 

Developing ecohydrological biotechnologies and Nature-Based Solutions (NBS) is vital 
for addressing global heavy metal contamination in aquatic ecosystems. These methods 
aim to enhance heavy metal removal while meeting regulatory requirements like the EU 
Water Framework Directive (Piwowarska, Kiedrzyńska, and Jaszczyszyn 2024). Green 
technologies, including bioremediation, offer cost-effective and sustainable solutions for 
heavy metal removal. Bioremediation, employing living entities like bacteria, fungi, and 
plants to degrade toxic substances, is considered practical, reliable, and environmentally 
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benign (Das et al. 2023). Addressing these challenges and embracing these future 
perspectives will be crucial for developing effective, sustainable, and environmentally 
friendly strategies for heavy metal elimination from ecosystems. 
 
13. CONCLUSION 

The escalation of unwanted waste generated by modern civilization has led to widespread 
contamination of our ecosystems. Among the myriad challenges posed by this 
contamination, heavy metal pollutants are particularly concerning due to their toxic effects 
on the environment and ability to infiltrate the food chain. In response to this pressing 
issue, we have examined various techniques that employ diverse approaches, including 
physical, chemical, and biological methods. These techniques encompass strategies 
such as immobilization using cost-effective absorbents, the application of chelating 
agents, and biological interventions such as phytoremediation. Furthermore, 
advancements in molecular and nanotechnology hold promise for enhancing remediation 
capabilities, offering novel avenues for removing heavy metals. The development of 
remediation technologies must remain closely linked to agricultural production, food 
safety, and land management considerations. While individual approaches have shown 
promising results, synergistic combinations of technologies, particularly those 
incorporating cutting-edge nano- and biotechnological methods, have emerged as 
particularly efficient. Additionally, integrating artificial intelligence can optimize 
remediation strategies by leveraging pertinent information extracted from environmental 
reports. As we confront the challenges and contemplate future perspectives in eliminating 
heavy metals from ecosystems, it becomes evident that prioritizing the development of 
effective, sustainable, and scalable removal methods is crucial for mitigating 
environmental impacts and safeguarding ecological integrity. 
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