
Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 182

ENHANCED HEAP FOR DIJKSTRA’S ALGORITHM

ANUBHAV KUMAR PRASAD
United Institute of Technology, Prayagraj, Uttar Pradesh, India. Email: anubhavkrprasad@gmail.com

ARUNI SINGH
KNIT Sultanpur, Uttar Pradesh, India. Email: arunisingh@knit.ac.in

Abstract

Success of min heap is because of its typical structure with parents containing values smaller than their
children which makes them faster for sorting n elements in n𝑙𝑜𝑔2𝑛 time. This motivated Dijkstra to
implement its ‘single source shortest path’ algorithm using min heap. However, one drawback of the min
heap is its self-destructive nature that has been used in the algorithms of heapsort and priority queues.
There is one variant of heap known as Fibonacci heap which is best suited for Dijkstra’s algorithm. In the
case of the heapsort algorithm, the elements are removed from the min heap one by one which destroy the
min heap making it impossible to perform any operation on it which restricts Dijkstra’s algorithm in detecting
a negative weight cycle. The self-destructive nature of min heap inspired to introduce a novel structure
named as Enhanced Heap to resolve the issue of self-destruction without any extra overhead.

Keywords: Min- Heap, Fibonacci Heap, Complete Binary Tree, Dijkstra’s Algorithm, Negative Weight
Cycle.

1. INTRODUCTION

Quest for a better data structure in terms of Time Complexity [6] for all operations like
insertion, deletion, and search called for a new data structure known as heap. Heap [4]
is a non-linear (tree) data structure [5] with two basic types: min-heap and max-heap. The
former store’s minimum value at the root while the latter store’s maximum value at the
root. It is already defined that insertion always takes place at the leaf and elements are
removed from min-heap while sorting, i.e., the min-heap returns all elements while sorting
making it an empty tree. The time complexity for insertion of a single element into a heap

and deletion from a min-heap is always 𝑙𝑜𝑔2𝑛, because min-heap rearranges elements
such that heap property is never violated.

The application areas for min-heap include priority queues [9], order statistics [10], and
even routing tables [11]. As discussed, the in-efficiency of min-heap to retain its elements
during sorting makes it different from other sorting algorithms like merge-sort [12], quick-
sort [13], or any other such sorting algorithms. While the other sorting algorithms can
retain the elements, the min-heap cannot. This research introduces Enhanced Heap (EH)
to eliminate the in-efficiency of min-heap such that elements are never removed. The
copy of each element is maintained in EH such that for next time sorting we can easily
get the same sequence without the need to add the elements again and rebuild the min-
heap. The EH is also applicable to the Fibonacci Heap [7] which will be used for Dijkstra’s
algorithm in the latter section to show its usefulness for negative weight cycle.

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 183

This research work has been divided into the following sections: Section 1 contains the
Introduction of this research work whereas Section 2 explains the literature related to the
work. Priority queue and heap are explained in Section 3 including the Enhanced Heap
followed by Section 4 which contains the main equations and formulas. Section 5
introduces our proposed algorithm and Section 6 abbreviates the Experimental work and
analysis, whereas discussions on the work is explained in Section 7. Section 8 concludes
the proposed work.

To find single source shortest path in a graph, two prime algorithms are implemented:
Dijkstra’s algorithm [1-3] and Bellman-Ford’s algorithm [4]. The advantage of Dijkstra’s
algorithm over the Bellman-Ford is simple and greedy approach. The disadvantage is not
able to detect negative weight cycle [15]. The disadvantage may not seem to be a severe
one, as a negative weight cycle is just a general concept. The idea comes from theory of
current flow in the circuit when the electrical circuit is represented in the form of graph,
the nodes point the current flowing in and out of the junctions and the edges may
represent some values of resistance as well as current flow but Negative weight cycles in
this case opposes Kirchhoff’s laws [8]. Hence, the Negative weight cycles could not be
denied. Therefore, some structural changes are required to modify the min-heap. This
modification in the min-heap is named as Enhanced Heap (EH) which introduces the
advantage of retaining the deleted elements. This is not of the place to mention here that,
priority queue and min-heap are different.

2. LITERATURE REVIEW

Dijkstra's Algorithm is a classical algorithm used to solve the ‘single source shortest path’
problem using a graph. The algorithm was originally proposed by Edsger Dijkstra [16] in
1959 is used in computer science, operations research, transportation engineering etc.
Later the researchers have made significant progress to improve the efficiency of the
algorithm, as well as application in different types of graph and optimization problems.
Cormen et al. [17] provided a detailed description of Dijkstra's Algorithm and its
implementation including its time complexity, data structure used, and optimization
techniques. The author Sedgewick includes in his work Dijkstra's Algorithm [18]
mentioning its working and application, another researcher named Eppstein provided a
comprehensive overview of shortest paths and networks, covering topics such as
Dijkstra's Algorithm, Bellman-Ford Algorithm, A* Algorithm [19] covering various
applications of these algorithms. Garey and Johnson [20] provide a comprehensive guide
to the theory of NP-completeness, including the shortest path problem and Dijkstra's
Algorithm.

Cormen [21] in 1993 proposed a modification to the algorithm that reduces its time
complexity. Eswaran and Tarjan [22] introduce the augmentation problem to obtain an
efficient solution for it using Dijkstra's Algorithm. Goldberg and Tarjan [23] presented a
new approach to the maximum flow problem, based on a modification of Dijkstra's
Algorithm. Thorup [24] proposed a new data structure, called RAM priority queues to

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 184

improve the performance of Dijkstra's Algorithm. Frederickson [25] emphasized data
structures that enable online updating of minimum spanning trees, with applications in
various problems, including shortest paths. Demetrescu and Italiano [26] proposed a
dynamic algorithm for computing shortest paths and reachability in planar graphs. Zwick
[27] introduced a new algorithm for computing all pairs’ shortest paths, based on bridging
sets and rectangular matrix multiplication. Feder et al. presented an approximation
algorithm for the longest path problem [28] and Cherkassky et al. represented the
shortest-path algorithms to evaluate their performance in various graphs [29]. Klein and
Ravi [30] proposed a nearly best-possible approximation algorithm for the node-
capacitated generalized Steiner tree problem. Blum and Karger [31] described an
algorithm for the shortest super-string problem, based on a modification of Dijkstra's
Algorithm. Finally, Lawler et al. [32] provided a guide to the Traveling Salesman Problem,
using a variation of Dijkstra's Algorithm.

3. PRIORITY QUEUE VS HEAP

The queue data structure follows the First in First Out (FIFO) policy for its element. This
policy is acceptable if the elements are not meant to be sorted in some sense. But when
it comes to some type of arrangement, as with the priority consideration of the elements,
normal queue operation needs to be modified such that it can fetch the elements in the
required order. Consider the following case:

D(4) A(5) B(1) C(10)

Fig 3.1: Priority Queue with priority value increasing from 1 to 10

Fig. 3.1 shows the priority queue with 4 elements with their associated priorities. Rear is
pointing at C and front at D. Order for removal of elements must be C, A, D, and B, but
queue operation would remove the elements D, A, B, and C which is incorrect. In this
case, max heap can be employed with root always storing the highest priority value.

Fig 3.2: Max Heap representation for the Priority Queue in Fig. 3.1

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 185

Depending on the requirement, a min or max heap is better suited for this type of
arrangement. As shown in fig. 3.2, the highest priority element is at the root with each
parent’s priority greater to its children. The elements can be sorted in O(n𝑙𝑜𝑔2𝑛) time with
"n" elements. This approach handles the condition efficiently, but heap rebuilding is
required after every single removal from the heap.

3.1. Enhanced Heap

Drawback of Dijkstra’s single source shortest path algorithm is because of the heap data
structure that it uses for implementation. The negative weight cycle detection requires
visiting the cycle one more time which is not possible as the elements/nodes are removed
once visited. Enhanced heap can retain the removed elements/nodes and therefore the
negative weight cycle can be visited once again to detect its presence. The enhanced
heap has the following properties as enhancement to heap:

i. Node structure: Every node will contain three fields:

a. The first and the second field will maintain the value of the element at that node
during insertion.

b. The third field will contain either 0 or 1 to indicate whether the element is removed
from the first field or not. The value “1” is used to indicate that the element has
been removed. This will be reversed when every node’s first info gets removed.

ii. Tree structure: The enhanced heap structure will be a complete binary tree [14].

Fig 3.1.1: An Enhanced Heap with three nodes

Fig 3.1.1 contains EH with three nodes. This is a generalized enhanced heap, hence, no
min/max condition is shown. The second info contains the first info element in all the tree
nodes. The third info is showing value 0, as no element has been removed. Let us
consider as an example, the following sequence of elements: 1, 2, 3, 4, 5, 6, and 7 to be
inserted in EH.

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 186

Now, suppose we need to extract the smallest element from this heap. The info part will
become 1, indicating the movement of the element.

To understand the sorting process, let us look at the array representation of the normal

heap with elements 1, 2, 3, 4, 5, 6, and 7:

1 2 3 4 5 6 7

Fig 3.1.2: The Array representation of a Heap

For this normal heap, the successive order of removal of elements will provide the sorted
list.

The same heap of fig. 4.2 can be modified to represent the modified heap as shown in
fig. 4.3.

1 1 0 2 2 0 3 3 0 4 4 0 5 5 0 6 6 0 7 7 0

Fig 3.1.3: Modified Heap for Fig.3.1.2

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 187

4. FORMULAS USED

For normal heap with index starting from 1, with parent (p) index as i:

The address of the Left_child (l) = 2 ∗ 𝑖 ………………… (1)

The address of the Right_child (r) = 2 ∗ 𝑖 + 1 ………… (2)

For an enhanced heap with index starting from 1, with parent (p) index as i:

The address of the Left_child (l) = 2 ∗ 𝑖 + 2…………… (3)

The address of the Right_child (r) = 2 ∗ 𝑖 + 5 …………. (4)

From equations 3 and 4, it is justifiable that EH is still following the properties of a heap,
and the mathematical calculations for a normal heap are also applicable to EH with minor
modifications.

5. ALGORITHM

5.1 Build_heap

void build_heap(int a[])

{
 for(int i = n/2-1 ; i >= 0; i--)
 {
 heapify (a, i); // this line will be replaced with e_heapify for Enhanced Heap_Sort
 }
}

The time complexity of build_heap() is proven to be 𝑂(𝑛).

5.2 Heapify

void heapify(int heap[], int child)

 {
 parent = (child-1)/2
 if(heap[parent] < heap[child])
 {
 swap(heap[parent], heap[child])
 heapify(heap, parent)
 }
 }

The time complexity of heapify() is proven to be 𝑂(𝑙𝑜𝑔2𝑛).

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 188

5.3 Heap_Sort

void heap_sort(int a[], int n)

{

 build_heap(a)

 for(int i = n-1; i >= 1; i--)

 {

 swap(a[i], a[0]);

 heapify(a, i+1);

 }

}

The time complexity of heap_sort() is 𝑂(𝑛𝑙𝑜𝑔2𝑛).

5.4 Enhanced Heap_Sort

void eheap_sort(int a[], int n)

{

 build_heap(a);

 for(int i = 0; i <n; i++)

 {

 swap(a[n/3-3*(i+1)], a[0]);

 heapify(a, i+1);

 }

}

The working of eheap_sort() is similar to that of heap_sort(). The only difference is that
eheap_sort() doesn’t decrease the size of the heap, this is because EH retains the
elements. Since elements are not removed, we need to take care of the swapping of the

root element with the last legal element of the EH, which is handled by a[n/3 − 3 ∗ (i +
1)]. This makes sure that the legal element is selected each time.

Since the process is similar to that of a normal heap, hence we have the same time

complexity of O(𝑛𝑙𝑜𝑔2𝑛).

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 189

6. EXAMPLE

(a)

(b)

(c)

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 190

(d)

(e)

(f)

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 191

(g)

(h)

(i)

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 192

(j)

(k)

(l)

Fig 6.1: Sorting of elements using the Modified Heap (a)-(l)

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 193

In the example shown above, no element is getting deleted completely because a copy
of it in the node.

This ensures that next time sorting, insertion, or deletion can be done on the same heap.

Another point of interest is that the loop will take care of the swapping mechanism as
shown below:

for(int i = 0; i < size; i++)

{
 swap(root, size – 3*(i + 1));

}

The swap function will swap the root element from the specific info part with the last legal
element from the last info part.

Since the loop will terminate on the last element, the last element will also be the sorted
sequence's last element.

This way we can achieve the functionality of the Heap using the Enhanced Heap and can
reuse it too.

7. DIJKSTRA’S ALGORITHM AND ENHANCED HEAP

Single source shortest paths can be calculated using either Bellman-Ford or Dijkstra’s
algorithms. The advantage which the latter one enjoys is its simple process. The process
is a Greedy one and is faster than the former if the sorted sequence of edges is provided.

The priority heap is used for this sorted sequence, which in turn uses min heap as a
calculative measure. As the heap size grows, more and more nodes are visited, and
finally, it calculates the shortest distances from the source to every other node. The
problem however is with heap implementation.

This is because to detect the negative weight cycle, the algo must use the same heap to
check for any change in the path’s distance calculated. If any difference is found show
the presence of it. As heap gets destroyed, we need to again repeat the process for the
new path distance calculated.

The above-mentioned problem can be checked if heap is replaced with EH which is
discussed with the help of example in next sub-section. All the applications where
Dijkstra’s Algorithm is applicable like map applications and telephone networks can use
the EH to perform better.

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 194

7.1 Example

Fig 7.1.1: Graph with negative weight cycle

Consider the above negative weight cycle (2-1-3-2) graph of Fig. 7.1.1. with starting
point/source vertex as 0. We can apply the special structure of the EH in the Fibonacci
Heap to detect this negative weight cycle:

Fig 7.1.2. Graph of Fig.7.1.1.: Using the Enhanced Heap concept with each node
representing a name, distance, parent, and used/unused information

The graph is shown in Fig. 7.1.2. depicts the same graph as in Fig.7.1.1. but with following
information; (a) name of the vertex, (b) distance of a vertex from the source, (c) parent of
the node, and (d) whether that node has been visited or not (0-unvisited, 1-unvisited). The
information part (d) is the most important, as it will make sure that the vertex is still present
and will not be reused. The steps involved in solving the above graph using Fibonacci
Heap and the corresponding MH implementations are shown in fig. 7.1.3 to 7.1.6, with
each root parent having two pieces of information; node number and the distance from
the source.

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 195

Fig 7.1.3: Exploring the source vertex, 0, and marking it as visited in the
corresponding EH implementation

Fig.7.1.4: Exploring the vertex, 2, and marking it as visited in the corresponding
EH implementation

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 196

Fig 7.1.5: Exploring the source vertex, 1, and marking it as visited in the
corresponding EH implementation

Fig 7.1.6: Exploring the source vertex, 3, and marking it as visited in the
corresponding EH implementation

The process stops at this stage, this is because vertex 3 is trying to relax a vertex that is
already visited, this indicates the presence of a negative weight cycle. Hence, EH can
detect the negative weight cycle in this way.

8. CONCLUSION AND DISCUSSION

The presented research demonstrated the effectiveness of reusable heap named as
Enhanced Heap in this work. The concept of reusable heap is extended to Dijkstra’s well
known algorithm for calculating single source shortest path problem. The EH is capable
of handling negative cycle for a given network of routes which removes the drawback of

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 197

Dijkstra’s algorithm discussed earlier in the work. The implementation of EH with
Fibonacci heap is presented in Section 7. It has been verified in Section 5 that the time
complexity for Dijkstra’s algorithm is same with EH as was with min-heap. The application
area of EH can be extended to other problem domains where reusable heaps are
required. The drawback of heap to retain its structure when sorting process is called
makes it inefficient and this is where EH is handy to implement.

References

1) Bellman, R. J. N. J. "Dynamic programming princeton university press princeton." New Jersey Google
Scholar (1957).

2) Dijkstra, Edsger W. "A note on two problems in connexion with graphs." Numerische mathematik 1.1
(1959): 269-271.

3) Kruskal, Joseph B. "On the shortest spanning subtree of a graph and the traveling salesman
problem." Proceedings of the American Mathematical society 7.1 (1956): 48-50.

4) Hoare, C. A. R. "Algorithm 63, 64 and 65." Comm. ACM 4.7 (1961): 321-322.

5) Fyfe, Colin, and Roland Baddeley. "Non-linear data structure extraction using simple Hebbian
networks." Biological cybernetics 72.6 (1995): 533-541.

6) Woeginger, G. J. (2004). Space and time complexity of exact algorithms: Some open problems. Proc.
IWPEC, LNCS, 3162, 281-290.

7) Zhang, W., Jiang, C., & Ma, Y. (2012, October). An improved Dijkstra algorithm based on pairing heap.
In 2012 Fifth International Symposium on Computational Intelligence and Design (Vol. 2, pp. 419-422).
IEEE.

8) Quintela, F. R., Redondo, R. C., Melchor, N. R., & Redondo, M. (2009). A general approach to
Kirchhoff's Laws. IEEE Transactions on Education, 52(2), 273-278.

9) Hunt, G. C., Michael, M. M., Parthasarathy, S., & Scott, M. L. (1996). An efficient algorithm for
concurrent priority queue heaps. Information Processing Letters, 60(3), 151-157.

10) Mahmoud, H. M., Modarres, R., & Smythe, R. T. (1995). Analysis of quickselect: An algorithm for order
statistics. RAIRO-Theoretical Informatics and Applications, 29(4), 255-276.

11) Sklower, K. (1991, January). A tree-based packet routing table for Berkeley unix. In USENIX
Winter (Vol. 1991, pp. 93-99).

12) Cole, R. (1988). Parallel merge sort. SIAM Journal on Computing, 17(4), 770-785.

13) Sedgewick, R. (1978). Implementing quicksort programs. Communications of the ACM, 21(10), 847-
857.

14) Choudum, S. A., & Nandini, R. U. (2004). Complete binary trees in folded and enhanced
cubes. Networks: An International Journal, 43(4), 266-272.

15) Huang, X. (2006, June). Negative-Weight Cycle Algorithms. In FCS (pp. 109-115).

16) Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik,
1(1), 269-271.

17) Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms (3rd ed.).
MIT Press.

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/
Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X
E-Publication: Online Open Access

Vol: 68 Issue 02 | 2025
DOI: 10.5281/zenodo.14915556

Feb 2025 | 198

18) Sedgewick, R. (2011). Algorithms (4th ed.). Addison-Wesley.

19) Eppstein, D. (2007). Shortest paths and networks. In Handbook of Discrete and Computational
Geometry (pp. 355-384). CRC Press.

20) Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-
completeness. W. H. Freeman.

21) Cormen, T. H. (1993). The optimization of Dijkstra's shortest path algorithm. Information Processing
Letters, 47(4), 207-210.

22) Eswaran, K. P., & Tarjan, R. E. (1976). Augmentation problems. SIAM Journal on Computing, 5(4),
653-665.

23) Goldberg, A. V., & Tarjan, R. E. (1987). A new approach to the maximum flow problem. Journal of the
ACM (JACM), 34(4), 921-940.

24) Thorup, M. (2004). On RAM priority queues. Journal of the ACM (JACM), 51(3), 315-328.

25) Frederickson, G. N. (1987). Data structures for on-line updating of minimum spanning trees, with
applications. SIAM Journal on Computing, 16(6), 1031-1046.

26) Demetrescu, C., & Italiano, G. F. (2002). Fully dynamic reachability and shortest paths in planar
graphs. SIAM Journal on Computing, 31(1), 160-183.

27) Zwick, U. (2002). All pairs shortest paths using bridging sets and rectangular matrix multiplication.
Journal of the ACM (JACM), 49(3), 289-317.

28) Feder, T., Motwani, R., & Olston, C. (1994). Approximating the longest path in a graph. Algorithmica,
11(4), 369-382.

29) Cherkassky, B. V., Goldberg, A. V., & Radzik, T. (1996). Shortest paths algorithms: theory and
experimental evaluation. Mathematical Programming, 73(2), 129-174.

30) Klein, P. N., & Ravi, R. (1995). A nearly best-possible approximation algorithm for node-capacitated
generalized Steiner trees. Journal of Algorithms, 19(1), 104-115.

31) Blum, A., & Karger, D. (1998). On the shortest superstring problem. SIAM Journal on Computing,
27(5), 1117-1133.

32) Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., & Shmoys, D. B. (1993). The Traveling Salesman
Problem: A Guide.

