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Abstract 

Success of min heap is because of its typical structure with parents containing values smaller than their 
children which makes them faster for sorting n elements in n𝑙𝑜𝑔2𝑛 time. This motivated Dijkstra to 
implement its ‘single source shortest path’ algorithm using min heap. However, one drawback of the min 
heap is its self-destructive nature that has been used in the algorithms of heapsort and priority queues. 
There is one variant of heap known as Fibonacci heap which is best suited for Dijkstra’s algorithm. In the 
case of the heapsort algorithm, the elements are removed from the min heap one by one which destroy the 
min heap making it impossible to perform any operation on it which restricts Dijkstra’s algorithm in detecting 
a negative weight cycle. The self-destructive nature of min heap inspired to introduce a novel structure 
named as Enhanced Heap to resolve the issue of self-destruction without any extra overhead. 

Keywords: Min- Heap, Fibonacci Heap, Complete Binary Tree, Dijkstra’s Algorithm, Negative Weight 
Cycle. 

 
1. INTRODUCTION 

Quest for a better data structure in terms of Time Complexity [6] for all operations like 
insertion, deletion, and search called for a new data structure known as heap. Heap [4] 
is a non-linear (tree) data structure [5] with two basic types: min-heap and max-heap. The 
former store’s minimum value at the root while the latter store’s maximum value at the 
root. It is already defined that insertion always takes place at the leaf and elements are 
removed from min-heap while sorting, i.e., the min-heap returns all elements while sorting 
making it an empty tree. The time complexity for insertion of a single element into a heap 

and deletion from a min-heap is always 𝑙𝑜𝑔2𝑛, because min-heap rearranges elements 
such that heap property is never violated.  

The application areas for min-heap include priority queues [9], order statistics [10], and 
even routing tables [11]. As discussed, the in-efficiency of min-heap to retain its elements 
during sorting makes it different from other sorting algorithms like merge-sort [12], quick-
sort [13], or any other such sorting algorithms. While the other sorting algorithms can 
retain the elements, the min-heap cannot. This research introduces Enhanced Heap (EH) 
to eliminate the in-efficiency of min-heap such that elements are never removed. The 
copy of each element is maintained in EH such that for next time sorting we can easily 
get the same sequence without the need to add the elements again and rebuild the min-
heap. The EH is also applicable to the Fibonacci Heap [7] which will be used for Dijkstra’s 
algorithm in the latter section to show its usefulness for negative weight cycle. 
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This research work has been divided into the following sections: Section 1 contains the 
Introduction of this research work whereas Section 2 explains the literature related to the 
work. Priority queue and heap are explained in Section 3 including the Enhanced Heap 
followed by Section 4 which contains the main equations and formulas. Section 5 
introduces our proposed algorithm and Section 6 abbreviates the Experimental work and 
analysis, whereas discussions on the work is explained in Section 7. Section 8 concludes 
the proposed work. 

To find single source shortest path in a graph, two prime algorithms are implemented: 
Dijkstra’s algorithm [1-3] and Bellman-Ford’s algorithm [4]. The advantage of Dijkstra’s 
algorithm over the Bellman-Ford is simple and greedy approach. The disadvantage is not 
able to detect negative weight cycle [15]. The disadvantage may not seem to be a severe 
one, as a negative weight cycle is just a general concept. The idea comes from theory of 
current flow in the circuit when the electrical circuit is represented in the form of graph, 
the nodes point the current flowing in and out of the junctions and the edges may 
represent some values of resistance as well as current flow but Negative weight cycles in 
this case opposes Kirchhoff’s laws [8]. Hence, the Negative weight cycles could not be 
denied. Therefore, some structural changes are required to modify the min-heap. This 
modification in the min-heap is named as Enhanced Heap (EH) which introduces the 
advantage of retaining the deleted elements. This is not of the place to mention here that, 
priority queue and min-heap are different. 
 
2. LITERATURE REVIEW 

Dijkstra's Algorithm is a classical algorithm used to solve the ‘single source shortest path’ 
problem using a graph. The algorithm was originally proposed by Edsger Dijkstra [16] in 
1959 is used in computer science, operations research, transportation engineering etc. 
Later the researchers have made significant progress to improve the efficiency of the 
algorithm, as well as application in different types of graph and optimization problems. 
Cormen et al. [17] provided a detailed description of Dijkstra's Algorithm and its 
implementation including its time complexity, data structure used, and optimization 
techniques. The author Sedgewick includes in his work Dijkstra's Algorithm [18] 
mentioning its working and application, another researcher named Eppstein provided a 
comprehensive overview of shortest paths and networks, covering topics such as 
Dijkstra's Algorithm, Bellman-Ford Algorithm, A* Algorithm [19] covering various 
applications of these algorithms. Garey and Johnson [20] provide a comprehensive guide 
to the theory of NP-completeness, including the shortest path problem and Dijkstra's 
Algorithm. 

Cormen [21] in 1993 proposed a modification to the algorithm that reduces its time 
complexity. Eswaran and Tarjan [22] introduce the augmentation problem to obtain an 
efficient solution for it using Dijkstra's Algorithm. Goldberg and Tarjan [23] presented a 
new approach to the maximum flow problem, based on a modification of Dijkstra's 
Algorithm. Thorup [24] proposed a new data structure, called RAM priority queues to 
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improve the performance of Dijkstra's Algorithm. Frederickson [25] emphasized data 
structures that enable online updating of minimum spanning trees, with applications in 
various problems, including shortest paths. Demetrescu and Italiano [26] proposed a 
dynamic algorithm for computing shortest paths and reachability in planar graphs. Zwick 
[27] introduced a new algorithm for computing all pairs’ shortest paths, based on bridging 
sets and rectangular matrix multiplication. Feder et al. presented an approximation 
algorithm for the longest path problem [28] and Cherkassky et al. represented the 
shortest-path algorithms to evaluate their performance in various graphs [29]. Klein and 
Ravi [30] proposed a nearly best-possible approximation algorithm for the node-
capacitated generalized Steiner tree problem. Blum and Karger [31] described an 
algorithm for the shortest super-string problem, based on a modification of Dijkstra's 
Algorithm. Finally, Lawler et al. [32] provided a guide to the Traveling Salesman Problem, 
using a variation of Dijkstra's Algorithm.  
 
3. PRIORITY QUEUE VS HEAP 

The queue data structure follows the First in First Out (FIFO) policy for its element. This 
policy is acceptable if the elements are not meant to be sorted in some sense. But when 
it comes to some type of arrangement, as with the priority consideration of the elements, 
normal queue operation needs to be modified such that it can fetch the elements in the 
required order. Consider the following case: 

D(4) A(5) B(1) C(10) 

 
Fig 3.1: Priority Queue with priority value increasing from 1 to 10 

Fig. 3.1 shows the priority queue with 4 elements with their associated priorities. Rear is 
pointing at C and front at D. Order for removal of elements must be C, A, D, and B, but 
queue operation would remove the elements D, A, B, and C which is incorrect. In this 
case, max heap can be employed with root always storing the highest priority value.  

 

Fig 3.2: Max Heap representation for the Priority Queue in Fig. 3.1 
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Depending on the requirement, a min or max heap is better suited for this type of 
arrangement. As shown in fig. 3.2, the highest priority element is at the root with each 
parent’s priority greater to its children. The elements can be sorted in O(n𝑙𝑜𝑔2𝑛 ) time with 
"n" elements. This approach handles the condition efficiently, but heap rebuilding is 
required after every single removal from the heap. 

3.1. Enhanced Heap 

Drawback of Dijkstra’s single source shortest path algorithm is because of the heap data 
structure that it uses for implementation. The negative weight cycle detection requires 
visiting the cycle one more time which is not possible as the elements/nodes are removed 
once visited. Enhanced heap can retain the removed elements/nodes and therefore the 
negative weight cycle can be visited once again to detect its presence. The enhanced 
heap has the following properties as enhancement to heap: 

i. Node structure: Every node will contain three fields: 

a. The first and the second field will maintain the value of the element at that node 
during insertion. 

b. The third field will contain either 0 or 1 to indicate whether the element is removed 
from the first field or not. The value “1” is used to indicate that the element has 
been removed. This will be reversed when every node’s first info gets removed. 

ii. Tree structure: The enhanced heap structure will be a complete binary tree [14]. 

 

Fig 3.1.1: An Enhanced Heap with three nodes 

Fig 3.1.1 contains EH with three nodes. This is a generalized enhanced heap, hence, no 
min/max condition is shown. The second info contains the first info element in all the tree 
nodes. The third info is showing value 0, as no element has been removed. Let us 
consider as an example, the following sequence of elements: 1, 2, 3, 4, 5, 6, and 7 to be 
inserted in EH. 
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Now, suppose we need to extract the smallest element from this heap. The info part will 
become 1, indicating the movement of the element. 

 
To understand the sorting process, let us look at the array representation of the normal 

heap with elements 1, 2, 3, 4, 5, 6, and 7: 

1 2 3 4 5 6 7 

Fig 3.1.2: The Array representation of a Heap 

For this normal heap, the successive order of removal of elements will provide the sorted 
list. 

The same heap of fig. 4.2 can be modified to represent the modified heap as shown in 
fig. 4.3. 

1 1 0 2 2 0 3 3 0 4 4 0 5 5 0 6 6 0 7 7 0 

Fig 3.1.3: Modified Heap for Fig.3.1.2 
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4. FORMULAS USED 

For normal heap with index starting from 1, with parent (p) index as i: 

The address of the Left_child (l) = 2 ∗ 𝑖 ………………… (1) 

The address of the Right_child (r) = 2 ∗ 𝑖 + 1 ………… (2) 

For an enhanced heap with index starting from 1, with parent (p) index as i: 

The address of the Left_child (l) = 2 ∗ 𝑖 + 2…………… (3) 

The address of the Right_child (r) = 2 ∗ 𝑖 + 5 …………. (4) 

From equations 3 and 4, it is justifiable that EH is still following the properties of a heap, 
and the mathematical calculations for a normal heap are also applicable to EH with minor 
modifications. 
 
5. ALGORITHM 

5.1 Build_heap 

void build_heap(int a[ ]) 

{ 
   for(int i = n/2-1 ; i >= 0; i-- ) 
   { 
       heapify (a, i); // this line will be replaced with e_heapify for Enhanced Heap_Sort  
   } 
} 

The time complexity of build_heap() is proven to be 𝑂(𝑛). 

5.2 Heapify 

void heapify(int heap[], int child) 

    { 
       parent = (child-1)/2 
          if(heap[parent] < heap[child])  
              { 
                  swap(heap[parent], heap[child]) 
                  heapify(heap, parent) 
              }   
    } 
 

The time complexity of heapify() is proven to be 𝑂(𝑙𝑜𝑔2𝑛). 
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5.3 Heap_Sort 

void heap_sort(int a[], int n) 

{ 

    build_heap(a) 

    for(int i = n-1; i >= 1; i--) 

    { 

        swap(a[i], a[0]); 

        heapify(a, i+1); 

    } 

} 

The time complexity of heap_sort() is 𝑂(𝑛𝑙𝑜𝑔2𝑛). 

5.4 Enhanced Heap_Sort 

void eheap_sort(int a[], int n) 

{ 

    build_heap(a); 

    for(int i = 0; i <n; i++) 

    { 

        swap(a[n/3-3*(i+1)], a[0]); 

        heapify(a, i+1); 

    } 

} 

The working of eheap_sort() is similar to that of heap_sort(). The only difference is that 
eheap_sort() doesn’t decrease the size of the heap, this is because EH retains the 
elements. Since elements are not removed, we need to take care of the swapping of the 

root element with the last legal element of the EH, which is handled by a[n/3 − 3 ∗ (i +
1)]. This makes sure that the legal element is selected each time. 

Since the process is similar to that of a normal heap, hence we have the same time 

complexity of O(𝑛𝑙𝑜𝑔2𝑛).   
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6. EXAMPLE 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 
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(g) 

 

(h) 

 

(i) 
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(j) 

 

(k) 

 

(l) 

Fig 6.1: Sorting of elements using the Modified Heap (a)-(l) 
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In the example shown above, no element is getting deleted completely because a copy 
of it in the node.  

This ensures that next time sorting, insertion, or deletion can be done on the same heap.  

Another point of interest is that the loop will take care of the swapping mechanism as 
shown below: 

for(int i = 0; i < size; i++) 

{ 
    swap(root, size – 3*(i + 1)); 

} 

The swap function will swap the root element from the specific info part with the last legal 
element from the last info part.  

Since the loop will terminate on the last element, the last element will also be the sorted 
sequence's last element.  

This way we can achieve the functionality of the Heap using the Enhanced Heap and can 
reuse it too. 
 
7. DIJKSTRA’S ALGORITHM AND ENHANCED HEAP 

Single source shortest paths can be calculated using either Bellman-Ford or Dijkstra’s 
algorithms. The advantage which the latter one enjoys is its simple process. The process 
is a Greedy one and is faster than the former if the sorted sequence of edges is provided.  

The priority heap is used for this sorted sequence, which in turn uses min heap as a 
calculative measure. As the heap size grows, more and more nodes are visited, and 
finally, it calculates the shortest distances from the source to every other node. The 
problem however is with heap implementation.  

This is because to detect the negative weight cycle, the algo must use the same heap to 
check for any change in the path’s distance calculated. If any difference is found show 
the presence of it. As heap gets destroyed, we need to again repeat the process for the 
new path distance calculated.  

The above-mentioned problem can be checked if heap is replaced with EH which is 
discussed with the help of example in next sub-section. All the applications where 
Dijkstra’s Algorithm is applicable like map applications and telephone networks can use 
the EH to perform better. 
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7.1 Example 

 

Fig 7.1.1: Graph with negative weight cycle 

Consider the above negative weight cycle (2-1-3-2) graph of Fig. 7.1.1. with starting 
point/source vertex as 0. We can apply the special structure of the EH in the Fibonacci 
Heap to detect this negative weight cycle: 

 

Fig 7.1.2. Graph of Fig.7.1.1.: Using the Enhanced Heap concept with each node 
representing a name, distance, parent, and used/unused information 

The graph is shown in Fig. 7.1.2. depicts the same graph as in Fig.7.1.1. but with following 
information; (a) name of the vertex, (b) distance of a vertex from the source, (c) parent of 
the node, and (d) whether that node has been visited or not (0-unvisited, 1-unvisited). The 
information part (d) is the most important, as it will make sure that the vertex is still present 
and will not be reused. The steps involved in solving the above graph using Fibonacci 
Heap and the corresponding MH implementations are shown in fig. 7.1.3 to 7.1.6, with 
each root parent having two pieces of information; node number and the distance from 
the source.  
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Fig 7.1.3: Exploring the source vertex, 0, and marking it as visited in the 
corresponding EH implementation 

 

Fig.7.1.4: Exploring the vertex, 2, and marking it as visited in the corresponding 
EH implementation 
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Fig 7.1.5: Exploring the source vertex, 1, and marking it as visited in the 
corresponding EH implementation 

 

Fig 7.1.6: Exploring the source vertex, 3, and marking it as visited in the 
corresponding EH implementation 

The process stops at this stage, this is because vertex 3 is trying to relax a vertex that is 
already visited, this indicates the presence of a negative weight cycle. Hence, EH can 
detect the negative weight cycle in this way. 
 
8. CONCLUSION AND DISCUSSION      

The presented research demonstrated the effectiveness of reusable heap named as 
Enhanced Heap in this work. The concept of reusable heap is extended to Dijkstra’s well 
known algorithm for calculating single source shortest path problem. The EH is capable 
of handling negative cycle for a given network of routes which removes the drawback of 
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Dijkstra’s algorithm discussed earlier in the work. The implementation of EH with 
Fibonacci heap is presented in Section 7. It has been verified in Section 5 that the time 
complexity for Dijkstra’s algorithm is same with EH as was with min-heap. The application 
area of EH can be extended to other problem domains where reusable heaps are 
required. The drawback of heap to retain its structure when sorting process is called 
makes it inefficient and this is where EH is handy to implement. 
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