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Abstract

In fields like autonomous systems, finance, and medical diagnostics, contemporary atrtificial intelligence
(Al) systems, in particular, deep learning models have shown cutting-edge performance. However, because
they lack guiding mechanisms for uncertainty quantification, interpretability, and calibration, these models
frequently function as opaque black boxes. In order to enable robust, curvature-aware learning through
natural gradient descent, this paper suggests a unified statistical framework that integrates Bayesian
inference with information geometry. The approach enhances convergence efficiency and epistemic
reliability by giving the parameter space a Riemannian structure determined by the Fisher Information
Matrix. The suggested model (Bayes + Natural Gradient) performs better than conventional Bayesian
models and standard neural networks, according to empirical assessments conducted on synthetic,
benchmark, and real-world datasets. The model's accuracy, negative log-likelihood (NLL), and expected
calibration error (ECE) on the MNIST subset were 95.0%, 0.109, and 1.9%, respectively, while those of
standard SGD-based networks were 92.8%, 0.174, and 6.2%. Themodel demonstrated practical relevance
by achieving clinically aligned attention maps, 0.94 AUC, and 85.9% accuracy in a medical imaging case
study on diabetic retinopathy detection. This work promotes a mathematically based approach to Al that
places an emphasis on transparency, calibration, and decision-making reliability in addition to performance.

Keywords: Bayesian Inference; Information Geometry; Natural Gradient Descent; Model Interpretability;
Uncertainty Quantification.

1. INTRODUCTION

In the last ten years, Artificial Intelligence (Al) has made huge strides, especially in areas
like natural language processing, computer vision, and medical diagnostics. Deep neural
networks (DNNs) are at the forefront of this progress. They have shown superhuman
performance in pattern recognition tasks (LeCun, Bengio, & Hinton, 2015; Esteva et al.,
2017).
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However, even though these models are good at making predictions, they often work like
black boxes, giving outputs with a lot of confidence but not showing how they came to
those decisions or what uncertainty they had (Lipton, 2018; Rudin, 2019).

This lack of openness makes things much harder, especially in areas where safety is very
important, like healthcare, finance, and criminal justice. In this context, the reliability of
predictions encompasses not only accuracy but also epistemic robustness, which refers
to the model's capacity to signal uncertainty or the potential for misleading predictions
(Gal & Ghahramani, 2016). Conventional training algorithms, including stochastic
gradient descent (SGD), function within Euclidean parameter spaces, neglecting the
inherent geometry of the statistical manifolds generated by model parameters.
Consequently, optimisation may converge ineffectively, resulting in overfitting in high-
dimensional contexts (Amari, 1998; Martens, 2020).

At the same time, the Bayesian paradigm has become popular again as a way to directly
include uncertainty quantification in the learning process. Bayesian inference, on the
other hand, creates a posterior distribution over model parameters, which lets uncertainty
flow through predictions (Neal, 1995; MacKay, 2003). Nonetheless, its practical
application in deep learning is frequently hindered by computational intractability,
requiring approximate techniques such as variational inference and Monte Carlo dropout
(Blundell et al., 2015; Gal & Ghahramani, 2016).

Recent advancements in information geometry offer a cohesive statistical framework for
integrating optimisation and inference. By giving parameter space, a Riemannian metric
based on the Fisher Information Matrix (FIM), one can think of learning as moving along
geodesics in a curved space of probability distributions (Amari & Nagaoka, 2000). This
results in natural gradient descent, an optimisation method that adjusts to the local
curvature of the loss landscape and has been demonstrated to surpass conventional
techniques in both convergence and generalisation (Pascanu & Bengio, 2014; Martens &
Grosse, 2015).

This paper examines the convergence of Bayesian statistics, deep learning, and
information geometry to establish a statistically sound and practically feasible framework
for robust and interpretable Al. The study concentrates on the function of geometrically-
informed Bayesian learning in alleviating overfitting, refining model calibration, and
augmenting reliability in critical decision-making contexts.

The study wants to know the following things:

i. How can information geometry enhance parameter estimation and learning
dynamics in deep neural networks?

ii. What benefits do Bayesian approaches provide in the modelling and dissemination
of epistemic uncertainty?

iii. Is it possible for the combination of geometry and probability to create Al models
that are easier to understand and hold accountable?
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This paper provides a statistically substantiated framework for meeting the increasing
demand for explainable and reliable Al through theoretical exposition, empirical
assessment, and a practical case study in medical diagnostics.

2. THEORETICAL FRAMEWORK
2.1 Bayesian Learning: A Probabilistic Perspective
Bayesian learning models the posterior over parameters as:

_p(D[O)p® _ ML, p(yilXi, 0)-pe)
p(BID) = p@  JII%,p(YilXi, 0)p(6)de 1)

For computational tractability, we approximate p(6|D) with a variational distribution q(6)
by minimising the Kullback-Leibler divergence:

= @
KL(q(®) I p(0 1 D)) = [ q(®)log -6 )
Minimising this is equivalent to maximising the Evidence Lower Bound (ELBO):
L(q) = Eq(e)[logp(8]D)] — KL(q(8) Il p(8)) 3)

This formulation naturally incorporates uncertainty through both the prior and the
posterior. However, parameter updates via SGD or ADAM do not exploit the local
curvature of the distribution space, leading to suboptimal paths through high-dimensional
parameter manifolds.

2.2 Information Geometry: Deriving the Natural Gradient

Let M = {p(x]|0):0 € ® c Ri}be a statistical manifold, a smooth family of probability
distributions parameterised by 6.

Fisher Information Metric
We define the Fisher information matrix7(0) as:

_ dlog p(x10) dlog p(x16)
95(0) = B p(x10) |~ 3g, 30, (4)

This defines a Riemannian metricg;;(8) = J;;(8), which turns @ into a curved manifold
where geodesics (shortest paths) depend on the information content of the data.

Euclidean vs Natural Gradient

The standard gradientV,L(8) gives the steepest ascent direction under the Euclidean
metric. In contrast, the natural gradient respects the geometry of M':

VoL(6) = I (6)VsL(6) (5)
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This can be derived by solving the following constrained optimisation problem (Amari,
1998):

rrégn L(6 + 60) subject to Dk, (p(x]|6) +60) |l p(x | 6)) = € (6)

Expanding Dy, using a second-order Taylor expansion yields:

Dicr (p(x10) + 861|p(x10)) ~ 5567 7(8)50 7)
This leads to the Lagrangian:

L£="TyL(6)766 + A (55677(6)56 e) (8)
Solving Vs = 0 yields:

66 = —n - I7H(8)VsL(6) 9)
This confirms that the natural gradient descent step is:

Orr1 = 60, —n - VoL(6,) (10)

where 7 is the step size?
2.3 Visualising the Parameter Manifold

To build intuition, consider a 2D example. Each point 6 in parameter space corresponds
to a distribution p(x|60). The distance between two parameter points under the Fisher
metric corresponds to the differential KL divergence between the associated
distributions.

Geometry of Parameter Space
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Figure 1: Parameter Space Geometry
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2.4 Summary of Theoretical Advantages

Property Frequentist (SGD) | Bayesian | Bayes + Geometry (Our Model)
Uncertainty Quantification X v v
Calibration X N4 vV
Reparameterisation Invariance X X v
Convergence Stability Moderate Slower High
Interpretability Low Moderate High

This theoretical foundation underpins the empirical results and case studies explored in
later sections. It provides a principled roadmap for building transparent, robust, and
trustworthy Al systems from a statistical perspective.

3. METHODOLOGY

This section outlines the experimental design used to investigate the impact of information
geometry and Bayesian inference on model robustness, calibration, and convergence
efficiency. This methodology is designed to empirically compare three learning
paradigms: traditional optimisation (frequentist), standard Bayesian learning, and
geometrically-informed Bayesian learning (the proposed framework).

3.1 Experimental Models and Learning Frameworks

We implemented three variants of a supervised learning pipeline for both synthetic and
real-world classification tasks. Each model shares the same base architecture and
training data, but differs in its learning dynamics:

Model Description Key Characteristics

Model A Standard Neural Network trained with Frequentist point estimation; Euclidean
Stochastic Gradient Descent (SGD) updates

Model B Bayesian Neural Network trained with Posterior over parameters; uncertainty-
Variational Inference aware
Bayesian Neural Network with Natural Geometric optimisation; posterior-aware,

Model C .
Gradient Descent curvature-aware

All models were implemented using PyTorch and trained under identical hardware and
data conditions to ensure fair comparison.

3.2 Dataset Descriptions
Synthetic Dataset

We generated synthetic data to illustrate calibration and uncertainty propagation in a
controlled setting.

Function: y = sinx + €, with e ~ N (0,0.12)

Domain: x € [—5,5], uniformly sampled

Train/Test Split: 70/30

Purpose: Evaluate behaviour in known ground truth regimes
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Real-World Datasets

UCI Boston Housing (Regression)

Features: 13 numeric predictors

Target: Median home value

Size: 506 samples

Purpose: Low-dimensional regression with uncertainty quantification
MNIST Subset (Classification)

Classes: Digits 0 to 4

Image size: 28x28

Samples: 30,000 (balanced)

Purpose: Vision-based learning with high-dimensional input
EyePACS (Case Study — Diabetic Retinopathy)

Images: Fundus photographs

Labels: 5-class DR severity (ordinal)

Size: 8,000 images (preprocessed subset)

Purpose: Medical diagnosis with high epistemic cost

3.3 Model Architecture and Priors

For each task, the following base architecture was used:
Synthetic and Boston Housing: 2 hidden layers (ReLU), 64 units
MNIST and EyePACS: CNN backbone (ResNet-18)
Bayesian Parameterisation (Model B & C)

Prior: p(8) = N(0,a2I), with ¢ = 0.1

Posterior: Variational distribution q(8) = N (u, diag(c?))
Inference: Variational Bayes using reparameterisation trick
Natural Gradient Implementation (Model C)

We compute approximate natural gradients via Kronecker-Factored Approximate
Curvature (K-FAC) (Martens & Grosse, 2015): V4L(8) = 7-1(0)V,L(6)

where 7(60) = A ® B, for efficient matrix inversion.
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3.4 Optimisation and Training Regime

Hyperparameter Model A Model B Model C
Optimiser SGD Adam Natural Gradient via K-FAC
Learning Rate 0.01 0.001 Adaptive (geometry-aware)
Batch Size 64 64 64

Epochs 100 150 100

Weight Decay le-4 le-5 le-5

Posterior Samples - 20 20

Training used early stopping based on validation Negative Log-Likelihood (NLL) and
calibration error.

3.5 Evaluation Metrics

The study adopted a multi-dimensional evaluation framework to assess both predictive
performance and statistical reliability:

Predictive Accuracy (Classification)

Accuracy = ~ ¥, 1(9; — ¥1) (11)
Negative Log-Likelihood (NLL)
1
NLL = - =1 logp(yilx;, 6) (12)

Expected Calibration Error (ECE)
ECE = $M_, 2l |acc(B,y,) — conf(Byy)| (13)

where B, is the set of predictions in bin m, acc(B,,) is empirical accuracy, and conf(B,)
is mean confidence?

Entropy (Uncertainty Measure)
H[p(y[x)] = — k=1 p(y = k [ ¥)log p(y = k | %) (14)
Provides insight into predictive confidence.
Training Dynamics
Convergence rate
Stability of loss curves
Posterior spread over time
3.6 Model Comparison and Visual Analysis
Beyond scalar metrics, we also evaluated:
Calibration plots: reliability diagrams

Posterior variance maps (Bayesian models)
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Grad-CAM saliency maps (case study)
Learning trajectories: loss, accuracy, and entropy over epochs

These analyses provide a more holistic view of model behaviour, especially in critical
applications.

3.7 Statistical Significance Testing

To assess whether observed performance differences are statistically significant, the
study used:

Paired t-tests (for NLL and accuracy)
Bootstrap confidence intervals (for ECE and AUC)
Bayesian Information Criterion (BIC) comparisons for model likelihoods

4. RESULTS AND DISCUSSION

This section presents the empirical results comparing the three model classes, frequentist
(Model A), Bayesian (Model B), and geometrically-aware Bayesian (Model C), across
synthetic, benchmark, and real-world datasets. The analysis focuses on predictive
performance, calibration, convergence dynamics, and uncertainty quantification. A
detailed case study in medical diagnostics (diabetic retinopathy detection) further
illustrates the practical implications of the proposed approach.

4.1 Predictive Performance

Table 1 summarises the key performance metrics across tasks. Results are averaged
over 5 random initialisations to ensure stability.

Table 1. Comparative Performance Across Models

Dataset Model Accuracy (%) 1 | NLL | | ECE (%) | | AUC 1 | Entropy |
Synthetic A (SGD) 89.3 0.318 7.5 - 0.71
B (Bayes) 91.6 0.254 5.1 - 0.53
C (Bayes + NG) 93.2 0.201 2.9 - 0.39
Boston Housing A (SGD) - 2.45 - - -
B (Bayes) - 2.03 - - -
C (Bayes + NG) - 1.88 - - -
MNIST (0-4) A (SGD) 92.8 0.174 6.2 0.96 0.58
B (Bayes) 93.7 0.140 3.8 0.97 0.42
C (Bayes + NG) 95.0 0.109 1.9 0.98 0.31

Three models, Model A (standard neural network trained with stochastic gradient
descent), Model B (Bayesian neural network), and Model C (Bayesian neural network
with natural gradient descent) are compared in Table 1 using three datasets: a 5-class
subset of the MNIST image classification dataset, the Boston Housing dataset, and a
synthetic regression task.
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Model A's accuracy in the synthetic dataset is 89.3%, but it has a comparatively high
negative log-likelihood (NLL) of 0.318 and an expected calibration error (ECE) of 7.5%.
These metrics are improved by Model B, which achieves 91.6% accuracy and lowers NLL
and ECE to 0.254 and 5.1%, respectively. With a well-calibrated ECE of 2.9%, a
significantly lower NLL of 0.201, and an accuracy of 93.2%, Model C exhibits the best
performance. Model C appears to make more confident and informative predictions, as
evidenced by the decrease in entropy values, which are a measure of model confidence,
from 0.71 in Model A to 0.39 in Model C.

Accuracy is not reported on the Boston Housing dataset, which is a regression task;
instead, NLL is used to compare the models. Once more, Model A performs the worst
(NLL = 2.45), whereas Model B enhances the fit (NLL = 2.03). With a lower NLL of 1.88,
Model C produces the best results, demonstrating the value of natural gradient
optimisation even in continuous-output configurations.

Model A achieves 92.8% accuracy with an NLL of 0.174 and an ECE of 6.2% for the
MNIST (0-4) classification task. While Model C leads by a wide margin with 95.0%
accuracy, an NLL of only 0.109, and an ECE of 1.9%, Model B improves performance
with 93.7% accuracy and better calibration (ECE = 3.8%). Model A's superior
discriminative power is further supported by its area under the ROC curve (AUC) score
of 0.96, Model B's slight improvement to 0.97, and Model C's reach of 0.98. Additionally,
Model C has the lowest entropy (0.31), which suggests that its predictions are more
reliable and confident.

Confirming the empirical advantages of combining Bayesian learning with information-
geometric optimisation, the table shows that Model C consistently performs better than
the other two models across a variety of datasets and evaluation metrics.

4.2 Statistical Significance and Robustness

The study performed paired t-tests and bootstrap analyses to evaluate statistical
significance:

Differences in NLL and ECE between Model B and Model C were significant (p <0.01).

Bootstrap confidence intervals for ECE (Model C: [2.6%, 3.2%]) confirmed the reliability
of results.

4.3 Discussion and Insights

The results confirm that: Bayesian learning introduces credible uncertainty and smoother
learning dynamics. Information geometry enhances convergence efficiency, calibration,
and parameter interpretability. In domains where decisions carry ethical or financial risks
(e.g., healthcare, fraud detection), the improved transparency and caution of Model C
offer distinct practical advantages. These findings suggest that Bayesian and
geometrically-aware models are not just theoretically appealing, but also empirically
effective and deployable in real-world applications.
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4.4 Summary Table Across Tasks

The table below aggregates results from all datasets to facilitate a holistic comparison of
the three model classes.

Table 2: Summary of Results Across Tasks

. Model A Model B Model C (Bayes +
Dataset Metric (SGD) (Bayes) Natural Gradient)
Synthetic Accuracy (%) 89.3 91.6 93.2
NLL 0.318 0.254 0.201
ECE (%) 7.5 5.1 2.9
Entropy 0.71 0.53 0.39
Boston Housing NLL 2.45 2.03 1.88
MNIST (0-4) Accuracy (%) 92.8 93.7 95.0
AUC 0.96 0.97 0.98
ECE (%) 6.2 3.8 1.9
Entropy 0.58 0.42 0.31
EyePACS Accuracy (%) 81.5 83.2 85.9
AUC 0.89 0.91 0.94
ECE (%) 8.1 5.6 2.9

Synthetic classification, Boston Housing regression, MNIST digit classification (0—4
subset), and diabetic retinopathy detection on the EyePACS dataset are the four tasks
for which Table 2 provides a combined summary of model performance. Three
configurations are compared: Model A (frequentist with SGD), Model B (Bayesian with
Euclidean updates), and Model C (Bayesian with Fisher preconditioning and Natural
Gradient descent). Model C consistently performs better than the other variants across
all datasets and metrics, demonstrating the value of combining information-geometric
optimisation with probabilistic inference.

Model C achieves the lowest negative log-likelihood (0.201), expected calibration error
(2.9%), and entropy (0.39), as well as the highest accuracy (93.2%) on the synthetic
dataset. In comparison to Models A and B, this pattern shows that it not only makes
accurate predictions more frequently but also assigns probabilities that are well-calibrated
and exhibits higher levels of epistemic confidence.

Only NLL is reported for the Boston Housing regression task. Model C performs best in
this instance as well, with an NLL of 1.88 as opposed to 2.03 for Model B and 2.45 for
Model A. This implies that even in low-dimensional data regimes, geometric updates aid
in improving the model's fit to the continuous output distribution.

Model C outperforms Model A (92.8% accuracy, 0.96 AUC) and Model B (93.7%
accuracy, 0.97 AUC) in the MNIST 0-4 classification task with 95.0% accuracy and an
AUC of 0.98. Its entropy is the lowest at 0.31 and its calibration is significantly better (ECE
of 1.9% compared to 6.2% in Model A), suggesting dependable and confident
probabilistic results.
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Lastly, Model C achieves 85.9% accuracy with an AUC of 0.94 in the EyePACS diabetic
retinopathy case study, while Model A achieves 81.5% and 0.89. Compared to the
baseline's 8.1% ECE, Model C's ECE of 2.9% represents a notable improvement. In
medical applications, where model miscalibration and overconfidence can result in
serious diagnostic errors, these findings are especially crucial.

The table shows that Model C offers better calibration, increased trustworthiness, and
more meaningful confidence estimates in addition to better prediction accuracy. This
demonstrates the usefulness of information geometry in a variety of machine learning
scenarios and validates its theoretical benefits.

4.5 Ablation Study: Effect of Geometric Terms

To isolate the impact of the geometric components, the study performed an ablation
study using the MNIST (digits 0-4) and EyePACS datasets. The study varied the training
configuration by toggling:

Bayesian posterior (Yes/No)
Natural gradient update (Yes/No)
Fisher-based preconditioning (Yes/No)
Table 3: Ablation Study on Geometric Components (MNIST Subset)

. : : Natural Fisher Accuracy | ECE

Configuration Bayesian Gradient | Preconditioning (%) (%) NLL
Standard SGD (Model A) X X X 92.8 6.2 0.174
Bayesian + Euclidean
(Model B) v X X 93.7 3.8 0.140
Bayesian + NG (Model C) v v v 95.0 1.9 0.109
Bayesian + NG, no FIM
approx. v v X 94.2 2.7 0.123
Bayesian + FIM only v X v 93.3 3.1 0.132

Using the MNIST (digits 0—4) subset, Table 3 shows an ablation study that separates the
effects of geometric components, natural gradient descent and Fisher Information Matrix
(FIM) preconditioning within the Bayesian learning framework.

With an expected calibration error (ECE) of 6.2% and a negative log-likelihood (NLL) of
0.174, the baseline model, Standard SGD (Model A), which does not incorporate
Bayesian inference or any geometric optimisation, achieves 92.8% accuracy. Accuracy
increases to 93.7% when Bayesian inference is added without any geometric components
(Bayesian + Euclidean, or Model B), while ECE and NLL drop to 3.8% and 0.140,
respectively. This suggests that calibration and predictive fit are improved by posterior
estimation alone.

The best results are obtained when Bayesian inference is fully integrated with both natural
gradient optimisation and FIM preconditioning (Model C), which reduces ECE and NLL to
1.9% and 0.109, respectively, and pushes accuracy to 95.0%.
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This illustrates how probabilistic reasoning and geometric optimisation work in concert to
greatly increase model accuracy and confidence.

Two more configurations are taken into consideration in order to further deconstruct these
effects. Accuracy is still high at 94.2% when the natural gradient is used without Fisher
preconditioning (Bayesian + NG, no FIM approx.), but both ECE (2.7%) and NLL (0.123)
are significantly higher than in the fully geometrically-informed model. In contrast, a more
modest gain of 93.3%, 3.1% ECE, and 0.132 NLL is obtained when FIM preconditioning
is applied without natural gradient updates (Bayesian + FIM only).

According to these results, the incorporation of information geometric components,
specifically, the natural gradient in conjunction with the FIM approximation, significantly
improves both predictive accuracy and uncertainty reliability, even though Bayesian
inference remains a crucial basis for calibrated learning. The theoretical claim that more
reliable Al systems result from curvature-aware optimisation in the parameter manifold is
strongly supported empirically by the ablation results.

4.6 Extended Ablation Study: Boston Housing Regression Task

The study trained and evaluated five variants of the base model under different
combinations of Bayesian inference and geometric awareness. For each, the study
report:

Negative Log-Likelihood (NLL): Measures model fit under the predicted distribution.
Root Mean Squared Error (RMSE): Measures point prediction error.
Predictive Standard Deviation (6): Mean width of model-predicted confidence intervals.

Log Predictive Density (LPD): Higher is better; measures log likelihood of observed
outcomes under the predictive distribution.

Table 4: Ablation Results — Boston Housing (Regression)

Configuration Bavesian Natural Fisher NLL | RMSE ol LPD
9 y Gradient | Preconditioning l l 1

Model A: Standard
SGD X X X 245 | 4.82 - -1.88
Model B: Bayes,
Euclidean opt. N4 X X 203 | 4.21 1.17 | -1.24
E"gﬂ\;“' C:Bayes + NG v v v 188 | 396 | 097 | -1.03
Bayes + NG, no Fisher v v X 196 | 412 | 1.08 | -1.13
approx.
Bayes + FIM, no NG v X v 1.94 4.07 1.03 | -1.11

An ablation study on the Boston Housing regression task is presented in Table 4, which
looks at the separate and combined effects of Fisher preconditioning, natural gradient
optimisation, and Bayesian inference. Evaluating each component's contribution to
uncertainty quality and predictive performance in a continuous-output setting is the aim.
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With a negative log-likelihood (NLL) of 2.45 and a root mean squared error (RMSE) of
4.82, the baseline, Model A (Standard SGD), which is devoid of both Bayesian and
geometric components, produces the worst results. The predictive standard deviation
(e"c™) is not reported because the model is a point-estimate and does not provide a way
to quantify uncertainty.

Model B, which introduces Bayesian inference without geometric enhancements,
enhances predictive reliability and model fit. With a mean predictive standard deviation of
1.17, it permits uncertainty estimation while lowering the NLL to 2.03 and the RMSE to
4.21. Under the uncertainty of the model itself, the corresponding log predictive density
(LPD) improves from -1.88 to -1.24, indicating more consistent predictions.

Model C, which combines Bayesian inference with Fisher Information Matrix
preconditioning and natural gradient updates, performs the best. This configuration
narrows predictive uncertainty (6 = 0.97 6 = 0.97), maximises LPD (-1.03), and achieves
the lowest NLL of 1.88 and the lowest RMSE of 3.96.

These improvements demonstrate that learning with geometry awareness not only
increases accuracy but also sharpens confidence intervals, producing predictions that are
more reliable and instructive.

Performance slightly deteriorates when applying natural gradients alone without Fisher
preconditioning: NLL rises to 1.96, RMSE falls to 4.12, and ¢ expands to 1.08. With an
NLL of 1.94 and an RMSE of 4.07, eliminating the natural gradient while keeping Fisher
preconditioning likewise produces worse results than Model C.

The findings highlight how information geometry and Bayesian reasoning work in tandem.
The combination of curvature-aware preconditioning and natural gradient optimisation
through the Fisher metric greatly increases point prediction accuracy and the statistical
coherence of uncertainty estimates, whereas Bayesian inference enhances model
calibration and predictive variance. This demonstrates how information-geometric
learning can be used practically even in low-dimensional, tabular regression problems.

5. IMPLICATIONS FOR Al TRANSPARENCY

Transparency, interpretability, and accountability are more important than ever as Al
systems are incorporated more and more into decision-making infrastructures, from
financial screening and criminal risk assessment to clinical diagnosis (Rudin, 2019;
Lipton, 2018).

This section explains how the suggested framework, Bayesian learning based on
information geometry, provides an operationally efficient and statistically sound route to
transparent, auditable, and reliable Al systems.

5.1 From Forecasting Capabilities to Probabilistic Responsibility

Predictive accuracy is the primary criterion used to evaluate the majority of cutting-edge
deep learning systems. But accuracy isn't enough in high-stakes situations.

Aug 2025 | 192



Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/

Journal of Xi'an Shiyou University, Natural Sciences Edition
ISSN: 1673-064X

E-Publication: Online Open Access

Vol: 68 Issue 08 | 2025

DOI: 10.5281/zen0d0.16925990

Clinicians, regulators, and legislators who make decisions need systems that are:
i. Accurately calibrated: Confidence scores ought to represent actual probabilities.
ii.  Uncertainty-aware: Capable of articulating the model's uncertainty.

iii. Interpretable: Able to be comprehended, examined, and questioned.

The findings show that frequentist models (such as SGD-trained networks) frequently
exhibit miscalibration, a pathology in which they overestimate their incorrect predictions.
A major drawback of black-box models is addressed by the geometrically-aware Bayesian
models, which offer both precise predictions and well-calibrated probabilistic confidence
(Guo et al., 2017).

5.2 Model Confidence as a Layer of Communication

Models can express epistemic uncertainty, or what the model does not know because of
sparse data or contradicting evidence, using Bayesian posterior distributions over
parameters. This becomes particularly crucial in:

i. Medical triage: a referral to human specialists may be prompted by a prediction with
a high degree of uncertainty.

ii. Autonomous systems: these are those in which human intervention or a fallback
behaviour may be triggered by uncertainty.

iii. Fraud detection: this is where cases that are unclear might be marked for human
review.

Integrating information geometry improves the stability and effectiveness of the learning
dynamics. Confidence intervals are guaranteed to be present and statistically coherent
by natural gradient descent, which reflects significant distances in the space of probability
distributions (Amari, 1998; Martens, 2020). Because of this, probabilistic interpretability is
made possible, and model confidence itself serves as a communication channel between
human and machine decision-makers.

5.3 Saliency Alignment and Visual Interpretability

The study found that geometrically-informed Bayesian models improved visual saliency
alignment and predictive performance in our medical imaging case study (diabetic
retinopathy classification). Grad-CAM visualisations showed that:

i. Model A (frequentist) frequently gave irrelevant regions the wrong attention.

il. Localised pathology-congruent retinal features in Model C (Bayes + NG) facilitate
clinicians' confidence in and validation of model judgements.

In fields where decisions need to be justified and where Al is supposed to support expert
judgement rather than replace it, this kind of alignment is essential (Caruana et al., 2015).
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5.4 Transparency Beyond Justification: Epistemic Stability and Reproducibility

The findings imply that transparency must also include epistemic robustness, or the
system's capacity to generate reliable, consistent results under a variety of training
scenarios that are plausible, even though explainability has emerged as a key theme in
Al ethics.

An extra layer of inductive bias is introduced by using Fisher-based natural gradients,
variational inference, and Bayesian priors, which enhances:

i. Convergence reproducibility across random initialisations.
ii. Stability of parameters, which lowers model behaviour variance.
iii. Smoother predictive landscapes show resilience to adversarial perturbations.

Transparency in this context refers to both interpretability and the consistency of the
conclusions the model makes, which increases its viability in practical applications (Doshi-
Velez & Kim, 2017).

5.5 Consequences for Regulation and Governance of Al

New Al laws (such as the FDA's guidelines on machine learning in healthcare and the
EU's Al Act) increasingly require Al systems to:

i. Document risk and uncertainty.
ii. Encourage decision-making that involves human involvement.
iii. Assure algorithmic responsibility.

One way to meet these needs is through geometrically-aware Bayesian learning, which
guantifies uncertainty using posterior variance and predictive entropy.

i. By lowering overfitting, unfair bias brought about by noise or under-represented
classes is lessened.

ii. Increasing auditability through testable and validated probabilistic outputs that are
clearly defined.

This framework is in line with the larger movement to make algorithmic transparency a
governance mechanism as opposed to just a technical one.

5.7 A Philosophical Viewpoint: What Does "Understanding” Mean?

Lastly, the framework raises an important question in scientific Al: Is uncertainty
estimation an explanation in and of itself? The study contends that probabilistic
transparency, which is based on statistically grounded uncertainty, is a more profound
and moral form of explanation, one that recognises the limitations of both data and model
than interpretability, which is frequently confused with post hoc visualisation or feature
attribution.
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6. CONCLUSION

Based on the integration of information geometry and Bayesian inference, this study
offered a cohesive, statistically supported framework for transparent and reliable artificial
intelligence.

The study showed how geometrically-aware Bayesian learning enhances not only
predictive performance but also important aspects of model reliability, interpretability, and
epistemic robustness, qualities that are becoming more and more crucial in practical Al
applications, through both theoretical explanation and empirical validation.

The study's strategy is based on the understanding that deep learning models, despite
their strength, frequently lack mechanisms for representing, calibrating, and explaining
uncertainty.

Stochastic gradient descent and other standard optimisation techniques work in a
Euclidean parameter space that ignores the model landscape's statistical structure and
local curvature.

On the other hand, the framework provides a Riemannian metric to parameter space
through the Fisher Information Matrix, allowing for statistically efficient and geometrically
coherent updates through natural gradient descent.

At the same time, uncertainty-aware inference using posterior distributions rather than
point estimates is made possible by the application of Bayesian learning principles. In
addition to improving performance, this dual focus on probability and geometry produces
models that can flag epistemic risk, communicate uncertainty, and postpone decision-
making in situations that are unclear or involve significant stakes.

Across artificial tasks, tabular regression, image classification, and medical diagnosis, the
empirical results consistently favoured the suggested approach (Model C: Bayes +
Natural Gradient) over both traditional Bayesian networks (Model B) and standard deep
learning (Model A).

In addition to having smoother convergence and better visual interpretability (e.g.,
saliency map alignment with clinical markers), Model C performed better in terms of
accuracy, negative log-likelihood, expected calibration error, and entropy-based
uncertainty.

The advantages of our framework went beyond metrics in our case study on diabetic
retinopathy. The model served as an explainable and audit-ready assistant to human
practitioners in addition to being a predictor by generating posterior-based confidence
intervals and clinically-aligned attention heatmaps.

This highlights a larger trend in Al: from systems that aim to surpass humans to those
that collaborate, communicate, and provide human-comprehensible justifications for their
decisions.
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Summary of Contributions

Based on probabilistic modelling and differential geometry, we developed a natural
gradient-based Bayesian learning framework.

1. The study combined calibration analysis, entropy estimation, and saliency map

interpretability to create an empirical evaluation pipeline that was applied to both
classification and regression tasks.

2. The study showed that the Fisher-aware updates enhance both convergence and

uncertainty quality through ablation studies that isolate the impact of geometric
regularisation.

3. The study connected theoretical accuracy with practical impact by using a case

study in medical imaging to demonstrate the framework's practical usefulness.

Future Work
There are still a number of avenues for expansion:

1. Scalability: Scaling to large transformer-based architectures and diffusion models

requires effective approximations to the Fisher Information Matrix (e.g., K-FAC,
diagonal estimates).

. Geometry-aware priors: To better align model assumptions with geometric insights,
future research could investigate non-Euclidean priors, such as those defined on
manifolds or Lie groups.

. Multi-modal inference: By incorporating this framework into multi-view Bayesian
deep learning (such as vision + text + tabular), strong, uncertainty-aware fusion
models may be produced.

. Integration with decision theory: Principled action selection and reinforcement
learning may result from integrating geometrically-informed Bayesian learning into
a Bayesian decision theory framework.

In the end, this paper makes the case that mathematics is still important for the
development of artificial intelligence. We can create intelligent, interpretable, and morally
consistent Al systems by expanding upon the fundamental statistical concepts of
probability, information, and geometry.
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