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Abstract 

In fields like autonomous systems, finance, and medical diagnostics, contemporary artificial intelligence 
(AI) systems, in particular, deep learning models have shown cutting-edge performance. However, because 
they lack guiding mechanisms for uncertainty quantification, interpretability, and calibration, these models 
frequently function as opaque black boxes. In order to enable robust, curvature-aware learning through 
natural gradient descent, this paper suggests a unified statistical framework that integrates Bayesian 
inference with information geometry. The approach enhances convergence efficiency and epistemic 
reliability by giving the parameter space a Riemannian structure determined by the Fisher Information 
Matrix. The suggested model (Bayes + Natural Gradient) performs better than conventional Bayesian 
models and standard neural networks, according to empirical assessments conducted on synthetic, 
benchmark, and real-world datasets. The model's accuracy, negative log-likelihood (NLL), and expected 
calibration error (ECE) on the MNIST subset were 95.0%, 0.109, and 1.9%, respectively, while those of 
standard SGD-based networks were 92.8%, 0.174, and 6.2%. Themodel demonstrated practical relevance 
by achieving clinically aligned attention maps, 0.94 AUC, and 85.9% accuracy in a medical imaging case 
study on diabetic retinopathy detection. This work promotes a mathematically based approach to AI that 
places an emphasis on transparency, calibration, and decision-making reliability in addition to performance. 

Keywords: Bayesian Inference; Information Geometry; Natural Gradient Descent; Model Interpretability; 
Uncertainty Quantification. 

 
1. INTRODUCTION 

In the last ten years, Artificial Intelligence (AI) has made huge strides, especially in areas 
like natural language processing, computer vision, and medical diagnostics. Deep neural 
networks (DNNs) are at the forefront of this progress. They have shown superhuman 
performance in pattern recognition tasks (LeCun, Bengio, & Hinton, 2015; Esteva et al., 
2017).  
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However, even though these models are good at making predictions, they often work like 
black boxes, giving outputs with a lot of confidence but not showing how they came to 
those decisions or what uncertainty they had (Lipton, 2018; Rudin, 2019). 

This lack of openness makes things much harder, especially in areas where safety is very 
important, like healthcare, finance, and criminal justice. In this context, the reliability of 
predictions encompasses not only accuracy but also epistemic robustness, which refers 
to the model's capacity to signal uncertainty or the potential for misleading predictions 
(Gal & Ghahramani, 2016). Conventional training algorithms, including stochastic 
gradient descent (SGD), function within Euclidean parameter spaces, neglecting the 
inherent geometry of the statistical manifolds generated by model parameters. 
Consequently, optimisation may converge ineffectively, resulting in overfitting in high-
dimensional contexts (Amari, 1998; Martens, 2020). 

At the same time, the Bayesian paradigm has become popular again as a way to directly 
include uncertainty quantification in the learning process. Bayesian inference, on the 
other hand, creates a posterior distribution over model parameters, which lets uncertainty 
flow through predictions (Neal, 1995; MacKay, 2003). Nonetheless, its practical 
application in deep learning is frequently hindered by computational intractability, 
requiring approximate techniques such as variational inference and Monte Carlo dropout 
(Blundell et al., 2015; Gal & Ghahramani, 2016). 

Recent advancements in information geometry offer a cohesive statistical framework for 
integrating optimisation and inference. By giving parameter space, a Riemannian metric 
based on the Fisher Information Matrix (FIM), one can think of learning as moving along 
geodesics in a curved space of probability distributions (Amari & Nagaoka, 2000). This 
results in natural gradient descent, an optimisation method that adjusts to the local 
curvature of the loss landscape and has been demonstrated to surpass conventional 
techniques in both convergence and generalisation (Pascanu & Bengio, 2014; Martens & 
Grosse, 2015). 

This paper examines the convergence of Bayesian statistics, deep learning, and 
information geometry to establish a statistically sound and practically feasible framework 
for robust and interpretable AI. The study concentrates on the function of geometrically-
informed Bayesian learning in alleviating overfitting, refining model calibration, and 
augmenting reliability in critical decision-making contexts. 

The study wants to know the following things: 

i. How can information geometry enhance parameter estimation and learning 
dynamics in deep neural networks? 

ii. What benefits do Bayesian approaches provide in the modelling and dissemination 
of epistemic uncertainty? 

iii. Is it possible for the combination of geometry and probability to create AI models 
that are easier to understand and hold accountable? 
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This paper provides a statistically substantiated framework for meeting the increasing 
demand for explainable and reliable AI through theoretical exposition, empirical 
assessment, and a practical case study in medical diagnostics. 
 
2. THEORETICAL FRAMEWORK 

2.1 Bayesian Learning: A Probabilistic Perspective 

Bayesian learning models the posterior over parameters as: 

p(θ|𝒟) =
p(𝒟|θ)p(θ)

p(𝒟)
=

∏ p(yi|xi, θ)
n
i=1 ⋅p(θ)

∫∏ p(yi|xi, θ)n
i=1 p(θ)dθ

                            (1) 

For computational tractability, we approximate p(θ|𝒟) with a variational distribution q(θ) 
by minimising the Kullback–Leibler divergence: 

KL(q(θ) ∥ p(θ ∣ 𝒟)) = ∫q(θ)log⁡
q(θ)

p(θ∣𝒟)
dθ                              (2) 

Minimising this is equivalent to maximising the Evidence Lower Bound (ELBO): 

ℒ(q) = 𝔼q(θ)[log p(θ|𝒟)] − KL(q(θ) ∥ p(θ))           (3) 

This formulation naturally incorporates uncertainty through both the prior and the 
posterior. However, parameter updates via SGD or ADAM do not exploit the local 
curvature of the distribution space, leading to suboptimal paths through high-dimensional 
parameter manifolds. 

2.2 Information Geometry: Deriving the Natural Gradient 

Let M = {p(x|θ): θ ∈ Θ ⊂ ℝd}be a statistical manifold, a smooth family of probability 
distributions parameterised by θ. 

Fisher Information Metric 

We define the Fisher information matrixℐ(θ) as: 

ℐ𝑖𝑗(𝜃) = 𝔼𝑥~𝑝(𝑥|𝜃) [
𝜕𝑙𝑜𝑔⁡ 𝑝(𝑥∣𝜃)

𝜕𝜃𝑖

𝜕𝑙𝑜𝑔⁡ 𝑝(𝑥∣𝜃)

𝜕𝜃𝑗
]                             (4) 

This defines a Riemannian metric𝑔𝑖𝑗(𝜃) = ℐ𝑖𝑗(𝜃), which turns 𝛩 into a curved manifold 

where geodesics (shortest paths) depend on the information content of the data. 

Euclidean vs Natural Gradient 

The standard gradient𝛻𝜃𝐿(𝜃) gives the steepest ascent direction under the Euclidean 
metric. In contrast, the natural gradient respects the geometry of ℳ: 

𝛻̃𝜃𝐿(𝜃) = ℐ−1(𝜃)𝛻𝜃𝐿(𝜃)                              (5) 
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This can be derived by solving the following constrained optimisation problem (Amari, 
1998): 

𝑚𝑖𝑛
𝛿𝜃

𝐿(𝜃 + 𝛿𝜃) subject to 𝐷𝐾𝐿(𝑝(𝑥|𝜃) + 𝛿𝜃) ∥ 𝑝(𝑥 ∣ 𝜃)) = 𝜀 (6)  

Expanding 𝐷𝐾𝐿 using a second-order Taylor expansion yields: 

𝐷𝐾𝐿(𝑝(𝑥|𝜃) + 𝛿𝜃‖𝑝(𝑥|𝜃)) ≈
1

2
𝛿𝜃𝒯ℐ(𝜃)𝛿𝜃      (7) 

This leads to the Lagrangian: 

ℒ = 𝛻𝜃𝐿(𝜃)
𝑇𝛿𝜃 + 𝜆 (

1

2
𝛿𝜃𝒯ℐ(𝜃)𝛿𝜃 − 𝜀)     (8) 

Solving 𝛻𝛿𝜃 = 0 yields: 

𝛿𝜃 = −𝜂 ⋅ ℐ−1(𝜃)𝛻𝜃𝐿(𝜃)      (9) 

This confirms that the natural gradient descent step is: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ 𝛻̃𝜃𝐿(𝜃𝑡)                                    (10) 

where 𝜂 is the step size? 

2.3 Visualising the Parameter Manifold 

To build intuition, consider a 2D example. Each point 𝜃 in parameter space corresponds 
to a distribution 𝑝(𝑥|𝜃). The distance between two parameter points under the Fisher 
metric corresponds to the differential KL divergence between the associated 
distributions. 

 

Figure 1: Parameter Space Geometry 
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2.4 Summary of Theoretical Advantages 

Property Frequentist (SGD) Bayesian Bayes + Geometry (Our Model) 

Uncertainty Quantification ✗ ✓ ✓ 

Calibration ✗ ✓ ✓✓ 

Reparameterisation Invariance ✗ ✗ ✓ 

Convergence Stability Moderate Slower High 

Interpretability Low Moderate High 

This theoretical foundation underpins the empirical results and case studies explored in 
later sections. It provides a principled roadmap for building transparent, robust, and 
trustworthy AI systems from a statistical perspective. 
 
3. METHODOLOGY 

This section outlines the experimental design used to investigate the impact of information 
geometry and Bayesian inference on model robustness, calibration, and convergence 
efficiency. This methodology is designed to empirically compare three learning 
paradigms: traditional optimisation (frequentist), standard Bayesian learning, and 
geometrically-informed Bayesian learning (the proposed framework). 

3.1 Experimental Models and Learning Frameworks 

We implemented three variants of a supervised learning pipeline for both synthetic and 
real-world classification tasks. Each model shares the same base architecture and 
training data, but differs in its learning dynamics: 

Model Description Key Characteristics 

Model A 
Standard Neural Network trained with 
Stochastic Gradient Descent (SGD) 

Frequentist point estimation; Euclidean 
updates 

Model B 
Bayesian Neural Network trained with 
Variational Inference 

Posterior over parameters; uncertainty-
aware 

Model C 
Bayesian Neural Network with Natural 
Gradient Descent 

Geometric optimisation; posterior-aware, 
curvature-aware 

All models were implemented using PyTorch and trained under identical hardware and 
data conditions to ensure fair comparison. 

3.2 Dataset Descriptions 

Synthetic Dataset 

We generated synthetic data to illustrate calibration and uncertainty propagation in a 
controlled setting. 

Function: 𝑦 = 𝑠𝑖𝑛 𝑥 + 𝜖, with 𝜖 ∼ 𝒩(0, 0.12) 

Domain: 𝑥 ∈ [−5,5], uniformly sampled 

Train/Test Split: 70/30 

Purpose: Evaluate behaviour in known ground truth regimes 
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Real-World Datasets 

UCI Boston Housing (Regression) 

Features: 13 numeric predictors 

Target: Median home value 

Size: 506 samples 

Purpose: Low-dimensional regression with uncertainty quantification 

MNIST Subset (Classification) 

Classes: Digits 0 to 4 

Image size: 28×28 

Samples: 30,000 (balanced) 

Purpose: Vision-based learning with high-dimensional input 

EyePACS (Case Study – Diabetic Retinopathy) 

Images: Fundus photographs 

Labels: 5-class DR severity (ordinal) 

Size: 8,000 images (preprocessed subset) 

Purpose: Medical diagnosis with high epistemic cost 

3.3 Model Architecture and Priors 

For each task, the following base architecture was used: 

Synthetic and Boston Housing: 2 hidden layers (ReLU), 64 units 

MNIST and EyePACS: CNN backbone (ResNet-18) 

Bayesian Parameterisation (Model B & C) 

Prior: 𝑝(𝜃) = 𝑁(0, 𝜎2𝐼), with 𝜎 = 0.1 

Posterior: Variational distribution 𝑞(𝜃) = 𝒩(𝜇, 𝑑𝑖𝑎𝑔(𝜎2)) 

Inference: Variational Bayes using reparameterisation trick 

Natural Gradient Implementation (Model C) 

We compute approximate natural gradients via Kronecker-Factored Approximate 

Curvature (K-FAC) (Martens & Grosse, 2015): 𝛻̃𝜃𝐿(𝜃) = ℐ−1(𝜃)𝛻𝜃𝐿(𝜃) 

where ℐ(𝜃) ≈ 𝐴⊗𝐵, for efficient matrix inversion. 
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3.4 Optimisation and Training Regime 

Hyperparameter Model A Model B Model C 

Optimiser SGD Adam Natural Gradient via K-FAC 

Learning Rate 0.01 0.001 Adaptive (geometry-aware) 

Batch Size 64 64 64 

Epochs 100 150 100 

Weight Decay 1e-4 1e-5 1e-5 

Posterior Samples – 20 20 

Training used early stopping based on validation Negative Log-Likelihood (NLL) and 
calibration error. 

3.5 Evaluation Metrics 

The study adopted a multi-dimensional evaluation framework to assess both predictive 
performance and statistical reliability: 

Predictive Accuracy (Classification) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑛
∑ 1(𝑦̂𝑖 − 𝑦𝑖)
𝑛
𝑖=1     (11) 

Negative Log-Likelihood (NLL) 

𝑁𝐿𝐿 = −
1

𝑛
∑ 𝑙𝑜gp(yi|xi, θ)
𝑛
𝑖=1     (12) 

Expected Calibration Error (ECE) 

ECE = ∑
|Bm|

n
|acc(Bm) − conf(Bm)|

M
m=1    (13) 

where Bm is the set of predictions in bin m, acc(Bm) is empirical accuracy, and conf(Bm) 
is mean confidence? 

Entropy (Uncertainty Measure) 

ℍ[p(y|x)] = −∑ p(y = k ∣ x)log⁡ p(y = k ∣ x)K
k=1   (14) 

Provides insight into predictive confidence. 

Training Dynamics 

Convergence rate 

Stability of loss curves 

Posterior spread over time 

3.6 Model Comparison and Visual Analysis 

Beyond scalar metrics, we also evaluated: 

Calibration plots: reliability diagrams 

Posterior variance maps (Bayesian models) 
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Grad-CAM saliency maps (case study) 

Learning trajectories: loss, accuracy, and entropy over epochs 

These analyses provide a more holistic view of model behaviour, especially in critical 
applications. 

3.7 Statistical Significance Testing 

To assess whether observed performance differences are statistically significant, the 
study used: 

Paired t-tests (for NLL and accuracy) 

Bootstrap confidence intervals (for ECE and AUC) 

Bayesian Information Criterion (BIC) comparisons for model likelihoods 
 
4. RESULTS AND DISCUSSION 

This section presents the empirical results comparing the three model classes, frequentist 
(Model A), Bayesian (Model B), and geometrically-aware Bayesian (Model C), across 
synthetic, benchmark, and real-world datasets. The analysis focuses on predictive 
performance, calibration, convergence dynamics, and uncertainty quantification. A 
detailed case study in medical diagnostics (diabetic retinopathy detection) further 
illustrates the practical implications of the proposed approach. 

4.1 Predictive Performance 

Table 1 summarises the key performance metrics across tasks. Results are averaged 
over 5 random initialisations to ensure stability. 

Table 1: Comparative Performance Across Models 

Dataset Model Accuracy (%) ↑ NLL ↓ ECE (%) ↓ AUC ↑ Entropy ↓ 

Synthetic A (SGD) 89.3 0.318 7.5 – 0.71 
 B (Bayes) 91.6 0.254 5.1 – 0.53 
 C (Bayes + NG) 93.2 0.201 2.9 – 0.39 

Boston Housing A (SGD) – 2.45 – – – 
 B (Bayes) – 2.03 – – – 
 C (Bayes + NG) – 1.88 – – – 

MNIST (0–4) A (SGD) 92.8 0.174 6.2 0.96 0.58 
 B (Bayes) 93.7 0.140 3.8 0.97 0.42  

C (Bayes + NG) 95.0 0.109 1.9 0.98 0.31 

Three models, Model A (standard neural network trained with stochastic gradient 
descent), Model B (Bayesian neural network), and Model C (Bayesian neural network 
with natural gradient descent) are compared in Table 1 using three datasets: a 5-class 
subset of the MNIST image classification dataset, the Boston Housing dataset, and a 
synthetic regression task. 
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Model A's accuracy in the synthetic dataset is 89.3%, but it has a comparatively high 
negative log-likelihood (NLL) of 0.318 and an expected calibration error (ECE) of 7.5%. 
These metrics are improved by Model B, which achieves 91.6% accuracy and lowers NLL 
and ECE to 0.254 and 5.1%, respectively. With a well-calibrated ECE of 2.9%, a 
significantly lower NLL of 0.201, and an accuracy of 93.2%, Model C exhibits the best 
performance. Model C appears to make more confident and informative predictions, as 
evidenced by the decrease in entropy values, which are a measure of model confidence, 
from 0.71 in Model A to 0.39 in Model C. 

Accuracy is not reported on the Boston Housing dataset, which is a regression task; 
instead, NLL is used to compare the models. Once more, Model A performs the worst 
(NLL = 2.45), whereas Model B enhances the fit (NLL = 2.03). With a lower NLL of 1.88, 
Model C produces the best results, demonstrating the value of natural gradient 
optimisation even in continuous-output configurations. 

Model A achieves 92.8% accuracy with an NLL of 0.174 and an ECE of 6.2% for the 
MNIST (0–4) classification task. While Model C leads by a wide margin with 95.0% 
accuracy, an NLL of only 0.109, and an ECE of 1.9%, Model B improves performance 
with 93.7% accuracy and better calibration (ECE = 3.8%). Model A's superior 
discriminative power is further supported by its area under the ROC curve (AUC) score 
of 0.96, Model B's slight improvement to 0.97, and Model C's reach of 0.98. Additionally, 
Model C has the lowest entropy (0.31), which suggests that its predictions are more 
reliable and confident. 

Confirming the empirical advantages of combining Bayesian learning with information-
geometric optimisation, the table shows that Model C consistently performs better than 
the other two models across a variety of datasets and evaluation metrics. 

4.2 Statistical Significance and Robustness 

The study performed paired t-tests and bootstrap analyses to evaluate statistical 
significance: 

Differences in NLL and ECE between Model B and Model C were significant (p < 0.01). 

Bootstrap confidence intervals for ECE (Model C: [2.6%, 3.2%]) confirmed the reliability 
of results. 

4.3 Discussion and Insights 

The results confirm that: Bayesian learning introduces credible uncertainty and smoother 
learning dynamics. Information geometry enhances convergence efficiency, calibration, 
and parameter interpretability. In domains where decisions carry ethical or financial risks 
(e.g., healthcare, fraud detection), the improved transparency and caution of Model C 
offer distinct practical advantages. These findings suggest that Bayesian and 
geometrically-aware models are not just theoretically appealing, but also empirically 
effective and deployable in real-world applications. 
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4.4 Summary Table Across Tasks 

The table below aggregates results from all datasets to facilitate a holistic comparison of 
the three model classes. 

Table 2: Summary of Results Across Tasks 

Dataset Metric 
Model A 
(SGD) 

Model B 
(Bayes) 

Model C (Bayes + 
Natural Gradient) 

Synthetic Accuracy (%) 89.3 91.6 93.2 
 NLL 0.318 0.254 0.201 
 ECE (%) 7.5 5.1 2.9 
 Entropy 0.71 0.53 0.39 

Boston Housing NLL 2.45 2.03 1.88 

MNIST (0–4) Accuracy (%) 92.8 93.7 95.0 
 AUC 0.96 0.97 0.98 
 ECE (%) 6.2 3.8 1.9 
 Entropy 0.58 0.42 0.31 

EyePACS Accuracy (%) 81.5 83.2 85.9 
 AUC 0.89 0.91 0.94  

ECE (%) 8.1 5.6 2.9 

Synthetic classification, Boston Housing regression, MNIST digit classification (0–4 
subset), and diabetic retinopathy detection on the EyePACS dataset are the four tasks 
for which Table 2 provides a combined summary of model performance. Three 
configurations are compared: Model A (frequentist with SGD), Model B (Bayesian with 
Euclidean updates), and Model C (Bayesian with Fisher preconditioning and Natural 
Gradient descent). Model C consistently performs better than the other variants across 
all datasets and metrics, demonstrating the value of combining information-geometric 
optimisation with probabilistic inference. 

Model C achieves the lowest negative log-likelihood (0.201), expected calibration error 
(2.9%), and entropy (0.39), as well as the highest accuracy (93.2%) on the synthetic 
dataset. In comparison to Models A and B, this pattern shows that it not only makes 
accurate predictions more frequently but also assigns probabilities that are well-calibrated 
and exhibits higher levels of epistemic confidence. 

Only NLL is reported for the Boston Housing regression task. Model C performs best in 
this instance as well, with an NLL of 1.88 as opposed to 2.03 for Model B and 2.45 for 
Model A. This implies that even in low-dimensional data regimes, geometric updates aid 
in improving the model's fit to the continuous output distribution. 

Model C outperforms Model A (92.8% accuracy, 0.96 AUC) and Model B (93.7% 
accuracy, 0.97 AUC) in the MNIST 0–4 classification task with 95.0% accuracy and an 
AUC of 0.98. Its entropy is the lowest at 0.31 and its calibration is significantly better (ECE 
of 1.9% compared to 6.2% in Model A), suggesting dependable and confident 
probabilistic results. 
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Lastly, Model C achieves 85.9% accuracy with an AUC of 0.94 in the EyePACS diabetic 
retinopathy case study, while Model A achieves 81.5% and 0.89. Compared to the 
baseline's 8.1% ECE, Model C's ECE of 2.9% represents a notable improvement. In 
medical applications, where model miscalibration and overconfidence can result in 
serious diagnostic errors, these findings are especially crucial. 

The table shows that Model C offers better calibration, increased trustworthiness, and 
more meaningful confidence estimates in addition to better prediction accuracy. This 
demonstrates the usefulness of information geometry in a variety of machine learning 
scenarios and validates its theoretical benefits. 

4.5 Ablation Study: Effect of Geometric Terms 

To isolate the impact of the geometric components, the study performed an ablation 
study using the MNIST (digits 0–4) and EyePACS datasets. The study varied the training 
configuration by toggling: 

Bayesian posterior (Yes/No) 

Natural gradient update (Yes/No) 

Fisher-based preconditioning (Yes/No) 

Table 3: Ablation Study on Geometric Components (MNIST Subset) 

Configuration Bayesian 
Natural 

Gradient 
Fisher 

Preconditioning 
Accuracy 

(%) 
ECE 
(%) 

NLL 

Standard SGD (Model A) ✗ ✗ ✗ 92.8 6.2 0.174 

Bayesian + Euclidean 
(Model B) 

✓ ✗ ✗ 93.7 3.8 0.140 

Bayesian + NG (Model C) ✓ ✓ ✓ 95.0 1.9 0.109 

Bayesian + NG, no FIM 
approx. 

✓ ✓ ✗ 94.2 2.7 0.123 

Bayesian + FIM only ✓ ✗ ✓ 93.3 3.1 0.132 

Using the MNIST (digits 0–4) subset, Table 3 shows an ablation study that separates the 
effects of geometric components, natural gradient descent and Fisher Information Matrix 
(FIM) preconditioning within the Bayesian learning framework. 

With an expected calibration error (ECE) of 6.2% and a negative log-likelihood (NLL) of 
0.174, the baseline model, Standard SGD (Model A), which does not incorporate 
Bayesian inference or any geometric optimisation, achieves 92.8% accuracy. Accuracy 
increases to 93.7% when Bayesian inference is added without any geometric components 
(Bayesian + Euclidean, or Model B), while ECE and NLL drop to 3.8% and 0.140, 
respectively. This suggests that calibration and predictive fit are improved by posterior 
estimation alone. 

The best results are obtained when Bayesian inference is fully integrated with both natural 
gradient optimisation and FIM preconditioning (Model C), which reduces ECE and NLL to 
1.9% and 0.109, respectively, and pushes accuracy to 95.0%.  
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This illustrates how probabilistic reasoning and geometric optimisation work in concert to 
greatly increase model accuracy and confidence. 

Two more configurations are taken into consideration in order to further deconstruct these 
effects. Accuracy is still high at 94.2% when the natural gradient is used without Fisher 
preconditioning (Bayesian + NG, no FIM approx.), but both ECE (2.7%) and NLL (0.123) 
are significantly higher than in the fully geometrically-informed model. In contrast, a more 
modest gain of 93.3%, 3.1% ECE, and 0.132 NLL is obtained when FIM preconditioning 
is applied without natural gradient updates (Bayesian + FIM only). 

According to these results, the incorporation of information geometric components, 
specifically, the natural gradient in conjunction with the FIM approximation, significantly 
improves both predictive accuracy and uncertainty reliability, even though Bayesian 
inference remains a crucial basis for calibrated learning. The theoretical claim that more 
reliable AI systems result from curvature-aware optimisation in the parameter manifold is 
strongly supported empirically by the ablation results. 

4.6 Extended Ablation Study: Boston Housing Regression Task 

The study trained and evaluated five variants of the base model under different 
combinations of Bayesian inference and geometric awareness. For each, the study 
report: 

Negative Log-Likelihood (NLL): Measures model fit under the predicted distribution. 

Root Mean Squared Error (RMSE): Measures point prediction error. 

Predictive Standard Deviation (σ̂): Mean width of model-predicted confidence intervals. 

Log Predictive Density (LPD): Higher is better; measures log likelihood of observed 
outcomes under the predictive distribution. 

Table 4: Ablation Results – Boston Housing (Regression) 

Configuration Bayesian 
Natural 

Gradient 
Fisher 

Preconditioning 
NLL 

↓ 
RMSE 

↓ 
σ ̂↓ 

LPD 
↑ 

Model A: Standard 
SGD 

✗ ✗ ✗ 2.45 4.82 – -1.88 

Model B: Bayes, 
Euclidean opt. 

✓ ✗ ✗ 2.03 4.21 1.17 -1.24 

Model C: Bayes + NG 
+ FIM 

✓ ✓ ✓ 1.88 3.96 0.97 -1.03 

Bayes + NG, no Fisher 
approx. 

✓ ✓ ✗ 1.96 4.12 1.08 -1.13 

Bayes + FIM, no NG ✓ ✗ ✓ 1.94 4.07 1.03 -1.11 

An ablation study on the Boston Housing regression task is presented in Table 4, which 
looks at the separate and combined effects of Fisher preconditioning, natural gradient 
optimisation, and Bayesian inference. Evaluating each component's contribution to 
uncertainty quality and predictive performance in a continuous-output setting is the aim. 
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With a negative log-likelihood (NLL) of 2.45 and a root mean squared error (RMSE) of 
4.82, the baseline, Model A (Standard SGD), which is devoid of both Bayesian and 
geometric components, produces the worst results. The predictive standard deviation 
(𝜎^σ^) is not reported because the model is a point-estimate and does not provide a way 
to quantify uncertainty. 

Model B, which introduces Bayesian inference without geometric enhancements, 
enhances predictive reliability and model fit. With a mean predictive standard deviation of 
1.17, it permits uncertainty estimation while lowering the NLL to 2.03 and the RMSE to 
4.21. Under the uncertainty of the model itself, the corresponding log predictive density 
(LPD) improves from -1.88 to -1.24, indicating more consistent predictions. 

Model C, which combines Bayesian inference with Fisher Information Matrix 
preconditioning and natural gradient updates, performs the best. This configuration 
narrows predictive uncertainty (σ̂ = 0.97 σ̂ = 0.97), maximises LPD (-1.03), and achieves 
the lowest NLL of 1.88 and the lowest RMSE of 3.96.  

These improvements demonstrate that learning with geometry awareness not only 
increases accuracy but also sharpens confidence intervals, producing predictions that are 
more reliable and instructive. 

Performance slightly deteriorates when applying natural gradients alone without Fisher 
preconditioning: NLL rises to 1.96, RMSE falls to 4.12, and σ̂  expands to 1.08. With an 
NLL of 1.94 and an RMSE of 4.07, eliminating the natural gradient while keeping Fisher 
preconditioning likewise produces worse results than Model C. 

The findings highlight how information geometry and Bayesian reasoning work in tandem. 
The combination of curvature-aware preconditioning and natural gradient optimisation 
through the Fisher metric greatly increases point prediction accuracy and the statistical 
coherence of uncertainty estimates, whereas Bayesian inference enhances model 
calibration and predictive variance. This demonstrates how information-geometric 
learning can be used practically even in low-dimensional, tabular regression problems. 
 
5. IMPLICATIONS FOR AI TRANSPARENCY 

Transparency, interpretability, and accountability are more important than ever as AI 
systems are incorporated more and more into decision-making infrastructures, from 
financial screening and criminal risk assessment to clinical diagnosis (Rudin, 2019; 
Lipton, 2018).  

This section explains how the suggested framework, Bayesian learning based on 
information geometry, provides an operationally efficient and statistically sound route to 
transparent, auditable, and reliable AI systems. 

5.1 From Forecasting Capabilities to Probabilistic Responsibility 

Predictive accuracy is the primary criterion used to evaluate the majority of cutting-edge 
deep learning systems. But accuracy isn't enough in high-stakes situations.  



Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/ 
Journal of Xi'an Shiyou University, Natural Sciences Edition 

ISSN: 1673-064X 
E-Publication: Online Open Access 

Vol: 68 Issue 08 | 2025 
DOI: 10.5281/zenodo.16925990 

 

Aug 2025 | 193 

Clinicians, regulators, and legislators who make decisions need systems that are:  

i. Accurately calibrated: Confidence scores ought to represent actual probabilities. 

ii. Uncertainty-aware: Capable of articulating the model's uncertainty. 

iii. Interpretable: Able to be comprehended, examined, and questioned. 

The findings show that frequentist models (such as SGD-trained networks) frequently 
exhibit miscalibration, a pathology in which they overestimate their incorrect predictions. 
A major drawback of black-box models is addressed by the geometrically-aware Bayesian 
models, which offer both precise predictions and well-calibrated probabilistic confidence 
(Guo et al., 2017). 

5.2 Model Confidence as a Layer of Communication 

Models can express epistemic uncertainty, or what the model does not know because of 
sparse data or contradicting evidence, using Bayesian posterior distributions over 
parameters. This becomes particularly crucial in: 

i. Medical triage: a referral to human specialists may be prompted by a prediction with 
a high degree of uncertainty. 

ii. Autonomous systems: these are those in which human intervention or a fallback 
behaviour may be triggered by uncertainty. 

iii. Fraud detection: this is where cases that are unclear might be marked for human 
review. 

Integrating information geometry improves the stability and effectiveness of the learning 
dynamics. Confidence intervals are guaranteed to be present and statistically coherent 
by natural gradient descent, which reflects significant distances in the space of probability 
distributions (Amari, 1998; Martens, 2020). Because of this, probabilistic interpretability is 
made possible, and model confidence itself serves as a communication channel between 
human and machine decision-makers. 

5.3 Saliency Alignment and Visual Interpretability 

The study found that geometrically-informed Bayesian models improved visual saliency 
alignment and predictive performance in our medical imaging case study (diabetic 
retinopathy classification). Grad-CAM visualisations showed that:  

i. Model A (frequentist) frequently gave irrelevant regions the wrong attention. 

ii. Localised pathology-congruent retinal features in Model C (Bayes + NG) facilitate 
clinicians' confidence in and validation of model judgements. 

In fields where decisions need to be justified and where AI is supposed to support expert 
judgement rather than replace it, this kind of alignment is essential (Caruana et al., 2015). 
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5.4 Transparency Beyond Justification: Epistemic Stability and Reproducibility 

The findings imply that transparency must also include epistemic robustness, or the 
system's capacity to generate reliable, consistent results under a variety of training 
scenarios that are plausible, even though explainability has emerged as a key theme in 
AI ethics. 

An extra layer of inductive bias is introduced by using Fisher-based natural gradients, 
variational inference, and Bayesian priors, which enhances:  

i. Convergence reproducibility across random initialisations. 

ii. Stability of parameters, which lowers model behaviour variance. 

iii. Smoother predictive landscapes show resilience to adversarial perturbations. 

Transparency in this context refers to both interpretability and the consistency of the 
conclusions the model makes, which increases its viability in practical applications (Doshi-
Velez & Kim, 2017). 

5.5 Consequences for Regulation and Governance of AI 

New AI laws (such as the FDA's guidelines on machine learning in healthcare and the 
EU's AI Act) increasingly require AI systems to:  

i. Document risk and uncertainty. 

ii. Encourage decision-making that involves human involvement. 

iii. Assure algorithmic responsibility. 

One way to meet these needs is through geometrically-aware Bayesian learning, which 
quantifies uncertainty using posterior variance and predictive entropy. 

i. By lowering overfitting, unfair bias brought about by noise or under-represented 
classes is lessened. 

ii. Increasing auditability through testable and validated probabilistic outputs that are 
clearly defined. 

This framework is in line with the larger movement to make algorithmic transparency a 
governance mechanism as opposed to just a technical one. 

5.7 A Philosophical Viewpoint: What Does "Understanding" Mean? 

Lastly, the framework raises an important question in scientific AI: Is uncertainty 
estimation an explanation in and of itself? The study contends that probabilistic 
transparency, which is based on statistically grounded uncertainty, is a more profound 
and moral form of explanation, one that recognises the limitations of both data and model 
than interpretability, which is frequently confused with post hoc visualisation or feature 
attribution. 
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6. CONCLUSION 

Based on the integration of information geometry and Bayesian inference, this study 
offered a cohesive, statistically supported framework for transparent and reliable artificial 
intelligence.  

The study showed how geometrically-aware Bayesian learning enhances not only 
predictive performance but also important aspects of model reliability, interpretability, and 
epistemic robustness, qualities that are becoming more and more crucial in practical AI 
applications, through both theoretical explanation and empirical validation. 

The study's strategy is based on the understanding that deep learning models, despite 
their strength, frequently lack mechanisms for representing, calibrating, and explaining 
uncertainty.  

Stochastic gradient descent and other standard optimisation techniques work in a 
Euclidean parameter space that ignores the model landscape's statistical structure and 
local curvature.  

On the other hand, the framework provides a Riemannian metric to parameter space 
through the Fisher Information Matrix, allowing for statistically efficient and geometrically 
coherent updates through natural gradient descent. 

At the same time, uncertainty-aware inference using posterior distributions rather than 
point estimates is made possible by the application of Bayesian learning principles. In 
addition to improving performance, this dual focus on probability and geometry produces 
models that can flag epistemic risk, communicate uncertainty, and postpone decision-
making in situations that are unclear or involve significant stakes. 

Across artificial tasks, tabular regression, image classification, and medical diagnosis, the 
empirical results consistently favoured the suggested approach (Model C: Bayes + 
Natural Gradient) over both traditional Bayesian networks (Model B) and standard deep 
learning (Model A).  

In addition to having smoother convergence and better visual interpretability (e.g., 
saliency map alignment with clinical markers), Model C performed better in terms of 
accuracy, negative log-likelihood, expected calibration error, and entropy-based 
uncertainty. 

The advantages of our framework went beyond metrics in our case study on diabetic 
retinopathy. The model served as an explainable and audit-ready assistant to human 
practitioners in addition to being a predictor by generating posterior-based confidence 
intervals and clinically-aligned attention heatmaps.  

This highlights a larger trend in AI: from systems that aim to surpass humans to those 
that collaborate, communicate, and provide human-comprehensible justifications for their 
decisions. 
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Summary of Contributions 

Based on probabilistic modelling and differential geometry, we developed a natural 
gradient-based Bayesian learning framework. 

1. The study combined calibration analysis, entropy estimation, and saliency map 
interpretability to create an empirical evaluation pipeline that was applied to both 
classification and regression tasks. 

2. The study showed that the Fisher-aware updates enhance both convergence and 
uncertainty quality through ablation studies that isolate the impact of geometric 
regularisation. 

3. The study connected theoretical accuracy with practical impact by using a case 
study in medical imaging to demonstrate the framework's practical usefulness. 

Future Work 

There are still a number of avenues for expansion: 

1. Scalability: Scaling to large transformer-based architectures and diffusion models 
requires effective approximations to the Fisher Information Matrix (e.g., K-FAC, 
diagonal estimates). 

2. Geometry-aware priors: To better align model assumptions with geometric insights, 
future research could investigate non-Euclidean priors, such as those defined on 
manifolds or Lie groups. 

3. Multi-modal inference: By incorporating this framework into multi-view Bayesian 
deep learning (such as vision + text + tabular), strong, uncertainty-aware fusion 
models may be produced. 

4. Integration with decision theory: Principled action selection and reinforcement 
learning may result from integrating geometrically-informed Bayesian learning into 
a Bayesian decision theory framework. 

In the end, this paper makes the case that mathematics is still important for the 
development of artificial intelligence. We can create intelligent, interpretable, and morally 
consistent AI systems by expanding upon the fundamental statistical concepts of 
probability, information, and geometry. 
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