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Abstract  

Let 𝐺 = (𝑉, 𝐸) be a connected graph. Assume a group 𝐶𝐶 containing colors. Let 𝜏 ∶ 𝑉(𝐺) → 𝐶𝐶 be an 

equitably colorable function. A dominating subset 𝑆 of 𝑉 is called an equitable color class dominating set if 
the number of dominating nodes in each color class is equal. The least possible cardinality of an equitable 
color class dominating set of 𝐺 is called the equitable color class domination number itself. It is indicated 
by 𝛾𝐸𝐶𝐶(𝐺). In this paper, we study the changing and unchanging of  𝐸𝐶𝐶 Domination number after the link 
removal.  

Keywords: Dominating Set, Equitable Coloring, Color Class (𝐶𝐶), Equitable Color Class (𝐸𝐶𝐶), Equitable 
Color Class Dominating Set, Link Removal 
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1. INTRODUCTION 

The study of the effect of removing a link on any graph theoretic parameter has interesting 
applications in the network context. That is, analyzing the removal of a link is more vital 
as an important consideration in the topological design of a network is fault tolerance. The 
behavior of a network in the presence of a fault can be analyzed by determining the effect 

that removing a link (link failure) from its underlying graph 𝐺 has on the fault-tolerance 
criterion. A detailed study of changing and unchanging domination is given in Chapter 5 
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of Haynes et. al [6]. Further, The semi-expository paper by Carrington et. al. [2] surveyed 
the problems of characterizing the graphs G into three classes based on link removal.  

If a link is deleted, the value of 𝛾 may increase or decrease or remain unaltered. Therefore 

the link set 𝐸 can be partitioned into the subsets 𝐸−, 𝐸0, and 𝐸+ where 

𝐸0  =  {𝑢𝑣 ∈  𝐸 ∶  𝛾(𝐺 −  𝑢𝑣)  =  𝛾(𝐺)}  

𝐸+  =  {𝑢𝑣 ∈  𝐸 ∶  𝛾(𝐺 −  𝑢𝑣)  >  𝛾(𝐺)}  

𝐸−  =  {𝑢𝑣 ∈  𝐸 ∶  𝛾(𝐺 −  𝑢𝑣)  <  𝛾(𝐺)}  

Several results on links belonging to the above subsets are given in [6]. In this chapter, 
we initiate a similar study corresponding to the equitable color class domination number 
of a graph. 
 
2. DEFINITIONS AND NOTATIONS 

Definition 2.1: [5] In a graph 𝐺 =  (𝑉, 𝐸), a subset 𝑆 of nodes is a dominating set if every 

node in 𝑉 – 𝑆 is adjacent to some node in 𝑆. The least possible cardinality of the 
dominating set of 𝐺 is called its domination number and it is indicated by 𝛾(𝐺). 

Definition 2.2: [8] In a graph 𝐺, adjacent nodes don’t ordain the same color is known as 
proper coloring. The least possible number of colors used to color a graph 𝐺 is known as 
its chromatic number and it is indicated by ꭓ(𝐺). 

Definition 2.3: A subset of nodes ordained to the same color is known as a color class. 

Definition 2.4: [8] In a graph, adjacent nodes don’t have the same color, and the 

difference between the cardinality of color classes is ≤ 1 is called an equitable coloring 
graph. The least possible number of colors used to equitably color a graph 𝐺 is known as 
its equitable chromatic number and it’s indicated by ꭓ𝐸(𝐺). 

Notation 2.5: Let 𝒳 be any real number. Then ⌊𝒳⌋ indicates the greatest integer ≤ 𝒳 and 

⌈𝒳⌉ indicates the smallest integer ≥ 𝒳. 

Notation 2.6: If 𝒶,𝒷 be the integers and 𝓃 > 0 then 𝒶 ≡ 𝒷 (mod 𝓃) indicates 𝓃|𝒶-𝒷. 
 
3. PRIMARY RESULTS 

Definition 3.1: [4] Let 𝐺 = (𝑉, 𝐸) be a connected graph. Assume a group 𝐶𝐶 containing 
colors. Let 𝜏: 𝑉(𝐺) → 𝐶𝐶 be an equitably colorable function. A dominating subset 𝑆 of 𝑉 
is called an equitable color class dominating set if the number of dominating nodes in 
each color class is equal. The least possible cardinality of an equitable color class 

dominating set of 𝐺 is the equitable color class domination number itself. It is indicated 

by 𝛾𝐸𝐶𝐶 (𝐺). 

Theorem 3.2: [3] If 𝐺 = (𝑉, 𝐸) be a connected graph then 𝛾𝐸𝐶𝐶(𝐺) = 𝑘ꭓ𝐸 where 𝑘 ∈ ℕ and 
ꭓ𝐸 be the equitable chromatic number of 𝐺. 
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Proof: let 𝐺 = (𝑉, 𝐸) be a connected graph and 𝜐1, 𝜐2, 𝜐3,…, 𝜐𝑛 be the nodes of 𝐺. The 
equitable chromatic number of 𝐺 is ꭓ𝐸 Let 𝜏: 𝑉(𝐺) → 𝐶𝐶 be an equitably colorable function 
where 𝐶𝐶 = {1,2,3,4, … . . , ꭓ𝐸}. Choose dominating nodes like a pair of ꭓ𝐸 number of 
different color nodes. So, the number of dominating nodes in each color class is equal. 

Let 𝑘 be the minimum number of pairs to dominate a graph 𝐺. Hence, the equitable color 

class domination number of a graph 𝐺 is 𝑘ꭓ𝐸 where ∈ ℕ.  

Example 3.3: A simple example of finding 𝛾𝐸𝐶𝐶 of a general graph 𝐺. 

 

Fig.3.1 

ꭓ𝐸 of the general graph 𝐺 is 3 and chosen dominating nodes in each color class are equal 
and one, 𝛾𝐸𝐶𝐶 (𝐺) = 3.  

4 LINK REMOVAL:  

We observe that the 𝐸𝐶𝐶 domination number  𝛾𝐸𝐶𝐶(𝐺) of a graph 𝐺 may increase or 

decrease or remain unchanged when a link is removed from 𝐺. Depending the 𝐸𝐶𝐶 
domination number of the graph 𝐺 after removing the link, the link set 𝐸(𝐺) is partitioned 

into three subsets 𝐸𝐸𝐶𝐶
− , 𝐸𝐸𝐶𝐶

0  and 𝐸𝐸𝐶𝐶
+  as follows.  

𝐸𝐸𝐶𝐶
0  =  {𝑢𝑣 ∈  𝐸 ∶  𝛾𝐸𝐶𝐶(𝐺 −  𝑢𝑣)  =  𝛾𝐸𝐶𝐶(𝐺)}  

𝐸𝐸𝐶𝐶
+  =  {𝑢𝑣 ∈  𝐸 ∶  𝛾𝐸𝐶𝐶(𝐺 −  𝑢𝑣)  >  𝛾𝐸𝐶𝐶(𝐺)}  

𝐸𝐸𝐶𝐶
−  =  {𝑢𝑣 ∈  𝐸 ∶  𝛾𝐸𝐶𝐶(𝐺 −  𝑢𝑣)  <  𝛾𝐸𝐶𝐶(𝐺)}  

In this section, we investigate the properties of the above sets. 

Example 4.1:  

(𝑖) Let 𝐾𝑛 be the complete graph with 𝑛 nodes and 
𝑛(𝑛−1)

2
 links. 𝛾𝐸𝐶𝐶(𝐾𝑛) = 𝑛. After the 

removal of the link, the number of links and 𝜒𝐸 is decreased by 1. Suppose the link 𝑢𝑣 is 

removed then the nodes 𝑢 and 𝑣 have ordained the same color. Hence, 𝛾𝐸𝐶𝐶(𝐾𝑛 − 𝑢𝑣) =
𝑛 − 1. The value of 𝛾𝐸𝐶𝐶 is decreasing by 1 for each link removal. Hence, 𝐸(𝐾𝑛) =
𝐸𝐸𝐶𝐶

− (𝐾𝑛). 

(𝑖𝑖) For the star graph 𝑆1,𝑛 with 𝑛 (𝑢𝑣𝑟 ∶ 1 ≤ 𝑟 ≤ 𝑛) pendant links, 𝛾𝐸𝐶𝐶(𝑆1,𝑛) = 1 + ⎾
𝑛

2
⏋. 

After the removal of the link, the graph becomes a 𝑆1,𝑛−1 graph and one isolated node. 
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When 𝑛 is even, there is no change in 𝜒𝐸 and 𝛾𝐸𝐶𝐶(𝑆1,𝑛 − 𝑢𝑣𝑟) = 1 + ⎾
𝑛

2
⏋. When 𝑛 is 

odd, the value of 𝜒𝐸 is decreased by 1 and the center and isolated node have ordained 

the same color. So, the colors are all ordained maximum 2 nodes. In the process of 
choosing dominating nodes, we must choose the isolated node and suppose we choose 

the center node the number of dominating nodes in the color of center node is 2. 
Therefore, we must choose 2 nodes in all colors that implies we need to choose all nodes 

as a dominating nodes. Therefore, 𝛾𝐸𝐶𝐶(𝑆1,𝑛 − 𝑢𝑣𝑟) = 𝑛 + 1. Hence, 𝑢𝑣𝑟 ∈

{
𝐸𝐸𝐶𝐶

+      𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝐸𝐸𝐶𝐶
0      𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

. 

Remark 4.2: There is a graph for which all the sets 𝐸𝐸𝐶𝐶
− , 𝐸𝐸𝐶𝐶

0  and 𝐸𝐸𝐶𝐶
+  are non-empty. 

This is a general graph 𝐺, 𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}. and 𝐸(𝐺) = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7}. 
𝜒𝐸(𝐺) = 4. ECC Dominating set = {𝑣1, 𝑣2, 𝑣5, 𝑣6} and 𝛾𝐸𝐶𝐶(𝐺) = 4. 

 

Fig.4.1 

 Now determine the node removal sets using the following figure. 

𝛾𝐸𝐶𝐶(𝐺 −  𝑒1) = 6 >  𝛾𝐸𝐶𝐶(𝐺) 

𝛾𝐸𝐶𝐶(𝐺 −  𝑒2) = 6 >  𝛾𝐸𝐶𝐶(𝐺) 

𝛾𝐸𝐶𝐶(𝐺 −  𝑒3) = 3 <  𝛾𝐸𝐶𝐶(𝐺) 

𝛾𝐸𝐶𝐶(𝐺 −  𝑒4) = 3 <  𝛾𝐸𝐶𝐶(𝐺) 

𝛾𝐸𝐶𝐶(𝐺 −  𝑒5) = 3 <  𝛾𝐸𝐶𝐶(𝐺) 

𝛾𝐸𝐶𝐶(𝐺 −  𝑒6) = 4 =  𝛾𝐸𝐶𝐶(𝐺) 

𝛾𝐸𝐶𝐶(𝐺 −  𝑒7) = 4 =  𝛾𝐸𝐶𝐶(𝐺) 

Now conclude that 𝐸𝐸𝐶𝐶
0  =  {𝑒6, 𝑒7}, 𝐸𝐸𝐶𝐶

+  =  {𝑒1, 𝑒2} and 𝐸𝐸𝐶𝐶
−  =  {𝑒3, 𝑒4, 𝑒5}. Hence, all the 

sets 𝐸𝐸𝐶𝐶
− , 𝐸𝐸𝐶𝐶

0  and 𝐸𝐸𝐶𝐶
+  are non-empty. 
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Fig.4.2 

Theorem 4.3: For the path graph 𝑛 > 2, 𝑉(𝑃𝑛) = (𝑣1, 𝑣2, . . . , 𝑣𝑛) on 𝑛 nodes, and 𝐸(𝑃𝑛) =
(𝑒1, 𝑒2, . . . , 𝑒𝑛−1) on 𝑛 − 1 links we have 1 ≤ 𝑟 ≤ 𝑛 − 1,  

 𝛾𝐸𝐶𝐶(𝑃𝑛 − 𝑒𝑟) = {
𝛾𝐸𝐶𝐶(𝑃𝑛)             𝑖𝑓 𝑒𝑟 ∈ 𝐸𝐸𝐶𝐶

0

𝛾𝐸𝐶𝐶(𝑃𝑛) + 2     𝑖𝑓 𝑒𝑟 ∈ 𝐸𝐸𝐶𝐶
+  

1. If 𝑛 ≡ 0 (𝑚𝑜𝑑 6)          

 𝑒𝑟 ∈ {
𝐸𝐸𝐶𝐶

0      𝑖𝑓 𝑟 ≡ 0 (𝑚𝑜𝑑 3)

𝐸𝐸𝐶𝐶
+      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 

2. If 𝑛 ≡ −1(𝑚𝑜𝑑 6)          𝑒𝑟 ∈

{
𝐸𝐸𝐶𝐶

+      𝑖𝑓 𝑟 ≡ 1,4 (𝑚𝑜𝑑 6)

𝐸𝐸𝐶𝐶
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
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3. If 𝑛 ≡ −2(𝑚𝑜𝑑 6)          𝑒𝑟 ∈

{
𝐸𝐸𝐶𝐶

+      𝑖𝑓 𝑟 ≡ 1,3 (𝑚𝑜𝑑 6)

𝐸𝐸𝐶𝐶
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

 

4. Otherwise, 𝐸(𝑃𝑛) = 𝐸𝐸𝐶𝐶
0  

Proof: let 𝑃𝑛 be the path graph, 𝑉(𝐺) = {𝑣𝑟 ∶ 1 ≤ 𝑟 ≤ 𝑛} and 𝐸(𝐺) = {𝑒𝑟 = 𝑣𝑟𝑣𝑟+1 ∶ 1 ≤

𝑟 ≤ 𝑛 − 1}. 𝜒𝐸(𝑃𝑛) = 2 and 𝛾𝐸𝐶𝐶(𝑃𝑛) = 2⎾
𝑛

6
⏋. 

Case 1: If 𝑛 ≡ 0(𝑚𝑜𝑑 6) 

Let 𝑛 = 6𝑘 for some 𝑘 ∈ ℕ. 

Subcase 1: If 𝑟 ≡ 0 (𝑚𝑜𝑑 3) 

After the removal of the link, the path is divided into two paths with 3𝑡 and 𝑛 − 3𝑡 nodes 
(1 ≤ 𝑡 ≤ 𝑘). So, it has 𝑡 and 𝛾𝐸𝐶𝐶(𝑃𝑛) − 𝑡 dominating nodes. Therefore, 𝛾𝐸𝐶𝐶(𝑃𝑛) is 
remained unchanged. 

Subcase 2: Otherwise, 

After the removal of the link, the path is divided into two paths with 𝑡 and 𝑛 − 𝑡 nodes (𝑡 ≠
3𝑠 𝑎𝑛𝑑 1 ≤ 𝑡 ≤ 3𝑘 − 1, 1 ≤ 𝑠 ≤ 2𝑘 − 1). When 𝑡 = 1 𝑎𝑛𝑑 𝑛 − 1 the path is divided into 𝑛 −
1 node path and an isolated node. So, it has 𝛾𝐸𝐶𝐶(𝑃𝑛) + 1  and 1 dominating nodes. 
Otherwise, it has 𝛾𝐸𝐶𝐶(𝑃𝑡) and 𝛾𝐸𝐶𝐶(𝑃𝑛−𝑡) dominating nodes. Implies, 𝛾𝐸𝐶𝐶(𝑃𝑡) +

𝛾𝐸𝐶𝐶(𝑃𝑛−𝑡) = 2⎾
𝑡

6
⏋ + 2⎾

𝑛−𝑡

6
⏋. For the maximum value of 𝑡, 

𝛾𝐸𝐶𝐶(𝑃𝑡) + 𝛾𝐸𝐶𝐶(𝑃𝑛−𝑡) = 2 (⎾
3𝑘 − 1

6
⏋ + ⎾

3𝑘 + 1

6
⏋) 

When 𝑘 is even, ⎾
3𝑘−1

6
⏋ + ⎾

3𝑘+1

6
⏋ = ⎾

3𝑘

6
⏋ + ⎾

3𝑘

6
⏋ + 1 = ⎾

6𝑘

6
⏋ + 1. When 𝑘 is 

odd, ⎾
3𝑘−1

6
⏋ + ⎾

3𝑘+1

6
⏋ = ⎾

3𝑘

6
⏋ + ⎾

3𝑘

6
⏋ = ⎾

𝑘

2
⏋ + ⎾

𝑘

2
⏋ =

𝑘+1

2
+

𝑘+1

2
= 𝑘 + 1 =

⎾
6𝑘

6
⏋ + 1. So we have, 𝛾𝐸𝐶𝐶(𝑃𝑡) + 𝛾𝐸𝐶𝐶(𝑃𝑛−𝑡) = 𝛾𝐸𝐶𝐶(𝑃𝑛) + 2. Therefore, 𝛾𝐸𝐶𝐶(𝑃𝑛) is 

increased by 2. 

Hence, 𝑒𝑟 ∈ {
𝐸𝐸𝐶𝐶

0      𝑖𝑓 𝑟 ≡ 0 (𝑚𝑜𝑑 3)

𝐸𝐸𝐶𝐶
+      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

. 

Case 2: If 𝑛 ≡ −1(𝑚𝑜𝑑 6) 

Let 𝑛 = 6𝑘 − 1 for some 𝑘 ∈ ℕ. After the removal of the link, the path is divided into two 
paths with 𝑟 and 𝑛 − 𝑟 nodes, one is odd path and another one is even path. 

Subcase 1: If 𝑟 ≡ 1,4 (𝑚𝑜𝑑 6) 

When 𝑟 = 1 𝑎𝑛𝑑 𝑛 − 1 the path is divided into 𝑛 − 1 node path and an isolated node. So, 
it has 𝛾𝐸𝐶𝐶(𝑃𝑛) + 1  and 1 dominating nodes. Otherwise, the path is divided into two paths 
with 3𝑡 + 1 and 𝑛 − 3𝑡 − 1 nodes (0 ≤ 𝑡 ≤ 𝑘 − 1). So, it has 𝛾𝐸𝐶𝐶(𝑃3𝑡+1) and 𝛾𝐸𝐶𝐶(𝑃𝑛−3𝑡−1) 
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dominating nodes. Implies, 𝛾𝐸𝐶𝐶(𝑃3𝑡+1) + 𝛾𝐸𝐶𝐶(𝑃𝑛−3𝑡−1) = 2⎾
3𝑡+1

6
⏋ + 2⎾

𝑛−3𝑡−1

6
⏋. For 

the maximum value of 𝑡, 

𝛾𝐸𝐶𝐶(𝑃3𝑡+1) + 𝛾𝐸𝐶𝐶(𝑃𝑛−3𝑡−1) = 2 (⎾
3𝑘 − 2

6
⏋ + ⎾

3𝑘 + 1

6
⏋) 

When 𝑘 is even, ⎾
3𝑘−2

6
⏋ + ⎾

3𝑘+1

6
⏋ = ⎾

3𝑘

6
⏋ + ⎾

3𝑘

6
⏋ + 1 = ⎾

6𝑘

6
⏋ + 1. When 𝑘 is 

odd, ⎾
3𝑘−2

6
⏋ + ⎾

3𝑘+1

6
⏋ = ⎾

3𝑘

6
⏋ + ⎾

3𝑘

6
⏋ = ⎾

𝑘

2
⏋ + ⎾

𝑘

2
⏋ =

𝑘+1

2
+

𝑘+1

2
= 𝑘 + 1 =

⎾
6𝑘

6
⏋ + 1 = ⎾

6𝑘−1

6
⏋ + 1. So we have, 𝛾𝐸𝐶𝐶(𝑃3𝑡+1) + 𝛾𝐸𝐶𝐶(𝑃𝑛−3𝑡−1) = 𝛾𝐸𝐶𝐶(𝑃𝑛) + 2. 

Therefore, 𝛾𝐸𝐶𝐶(𝑃𝑛) is increased by 2. 

Subcase 2: Otherwise, 

Where = 3𝑡 𝑜𝑟 3𝑡 − 1 (1 ≤ 𝑡 ≤ 2𝑘 − 1). We can be changed the coloring order according 

to preference in this case. So, it has 𝛾(𝑃𝑟) and 𝛾(𝑃𝑛−𝑟) dominating nodes. Implies, 𝛾(𝑃𝑟) +

𝛾(𝑃𝑛−𝑟) = ⎾
𝑟

3
⏋ + ⎾

𝑛−𝑟

3
⏋. For the maximum value of 𝑡, 

When 𝑟 = 3𝑡, 𝛾(𝑃3𝑡) + 𝛾(𝑃𝑛−3𝑡) = ⎾
3(2𝑘−1)

3
⏋ + ⎾

𝑛−3(2𝑘−1)

3
⏋ = 2𝑘 − 1 +

⎾
6𝑘−1−6𝑘+3

3
⏋ = 2𝑘 = 2 (

𝑛+1

6
) = 2⎾

𝑛

6
⏋. 

When 𝑟 = 3𝑡 − 1, 𝛾(𝑃3𝑡−1) + 𝛾(𝑃𝑛−3𝑡+1) = ⎾
3(2𝑘−1)−1

3
⏋ + ⎾

𝑛−3(2𝑘−1)+1

3
⏋ = ⎾

6𝑘−4

3
⏋ +

1 = ⎾
6𝑘−4

6
⏋ + 𝑘 − 1 + 1 = 2𝑘 = 2 (

𝑛+1

6
) = 2⎾

𝑛

6
⏋.. So we have, 𝛾(𝑃𝑟) + 𝛾(𝑃𝑛−𝑟) =

𝛾𝐸𝐶𝐶(𝑃𝑛). Therefore, 𝛾𝐸𝐶𝐶(𝑃𝑛) is remained unchanged. 

Hence, 𝑒𝑟 ∈ {
𝐸𝐸𝐶𝐶

+      𝑖𝑓 𝑟 ≡ 1,4 (𝑚𝑜𝑑 6)

𝐸𝐸𝐶𝐶
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                

. 

Case 3: If 𝑛 ≡ −2(𝑚𝑜𝑑 6) 

Let 𝑛 = 6𝑘 − 2 for some 𝑘 ∈ ℕ. After the removal of the link, the path is divided into two 

paths with 𝑟 and 𝑛 − 𝑟 nodes, both is either odd or even path. 

Subcase 1: If 𝑟 ≡ 1 (𝑚𝑜𝑑 6) 

When 𝑟 = 1  the path is divided into 𝑛 − 1 node path and an isolated node. So, it has 
𝛾𝐸𝐶𝐶(𝑃𝑛) + 1  and 1 dominating nodes. Otherwise, the path is divided into two paths with 
6𝑡 + 1 and 𝑛 − 6𝑡 − 1 nodes (1 ≤ 𝑡 ≤ 𝑘 − 1). So, it has 𝛾𝐸𝐶𝐶(𝑃6𝑡+1) and 𝛾𝐸𝐶𝐶(𝑃𝑛−6𝑡−1) 

dominating nodes. Implies, 𝛾𝐸𝐶𝐶(𝑃6𝑡+1) + 𝛾𝐸𝐶𝐶(𝑃𝑛−6𝑡−1) = 2⎾
6𝑡+1

6
⏋ + 2⎾

𝑛−6𝑡−1

6
⏋. For 

the maximum value of 𝑡, 

𝛾𝐸𝐶𝐶(𝑃6𝑡+1) + 𝛾𝐸𝐶𝐶(𝑃𝑛−6𝑡−1) = 2 (⎾
6𝑘 − 5

6
⏋ + 1) = 2 (⎾

6𝑘 − 2

6
⏋ + 1) 

  = 2 (⎾
𝑛

6
⏋ + 1) = 𝛾𝐸𝐶𝐶(𝑃𝑛) + 2. 
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Subcase 2: If 𝑟 ≡ 3 (𝑚𝑜𝑑 6) 

When 𝑟 = 𝑛 − 1  the path is divided into 𝑛 − 1 node path and an isolated node. So, it has 
𝛾𝐸𝐶𝐶(𝑃𝑛) + 1  and 1 dominating nodes. Otherwise, the path is divided into two paths with 
6𝑡 + 3 and 𝑛 − 6𝑡 − 3 nodes (0 ≤ 𝑡 ≤ 𝑘 − 2, 𝑘 > 1). So, it has 𝛾𝐸𝐶𝐶(𝑃6𝑡+3) and 

𝛾𝐸𝐶𝐶(𝑃𝑛−6𝑡−3) dominating nodes. Implies, 𝛾𝐸𝐶𝐶(𝑃6𝑡+3) + 𝛾𝐸𝐶𝐶(𝑃𝑛−6𝑡−3) = 2⎾
6𝑡+3

6
⏋ +

2⎾
𝑛−6𝑡−3

6
⏋. For the maximum value of 𝑡, 

𝛾𝐸𝐶𝐶(𝑃6𝑡+3) + 𝛾𝐸𝐶𝐶(𝑃𝑛−6𝑡−3) = 2 (⎾
6𝑘 − 9

6
⏋ + 2) = 2 (⎾

6𝑘 − 2

6
⏋ − 1 + 2) 

  = 2 (⎾
𝑛

6
⏋ + 1) = 𝛾𝐸𝐶𝐶(𝑃𝑛) + 2. 

Subcase 3: Otherwise, 

Where = 2𝑡 (1 ≤ 𝑡 ≤ 3𝑘 − 2) 𝑜𝑟 6𝑡 − 1 (1 ≤ 𝑡 ≤ 𝑘 − 1 , 𝑘 > 1). We can be changed the 

coloring order according to preference in this case. So, it has 𝛾(𝑃𝑟) and 𝛾(𝑃𝑛−𝑟) 

dominating nodes. Implies, 𝛾(𝑃𝑟) + 𝛾(𝑃𝑛−𝑟) = ⎾
𝑟

3
⏋ + ⎾

𝑛−𝑟

3
⏋. For the maximum value 

of 𝑡, 

When 𝑟 = 2𝑡, 𝛾(𝑃2𝑡) + 𝛾(𝑃𝑛−2𝑡) = ⎾
2(3𝑘−2)

3
⏋ + ⎾

𝑛−2(3𝑘−2)

3
⏋ = ⎾

6𝑘−4

3
⏋ +

⎾
6𝑘−2−6𝑘+4

3
⏋ = 2𝑘 − 1 + 1 = 2𝑘 = 2 (

𝑛+2

6
) = 2⎾

𝑛

6
⏋. 

When 𝑟 = 6𝑡 − 1, 𝛾(𝑃6𝑡−1) + 𝛾(𝑃𝑛−6𝑡+1) = ⎾
6(𝑘−1)−1

3
⏋ + ⎾

𝑛−6(𝑘−1)+1

3
⏋ = ⎾

6𝑘−7

3
⏋ +

⎾
6𝑘−2−6𝑘+6+1

3
⏋ = 2𝑘 − 2 + 2 = 2𝑘 = 2 (

𝑛+2

6
) = 2⎾

𝑛

6
⏋. So we have, 𝛾(𝑃𝑟) + 𝛾(𝑃𝑛−𝑟) =

𝛾𝐸𝐶𝐶(𝑃𝑛). Therefore, 𝛾𝐸𝐶𝐶(𝑃𝑛) is remained unchanged. 

Hence, 𝑒𝑟 ∈ {
𝐸𝐸𝐶𝐶

+      𝑖𝑓 𝑟 ≡ 1,3 (𝑚𝑜𝑑 6)

𝐸𝐸𝐶𝐶
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

. 

Case 4: Otherwise 

Subcase 1: If 𝑛 ≡ −3(𝑚𝑜𝑑 6) 

Let 𝑛 = 6𝑘 − 3 for some 𝑘 ∈ ℕ. After the removal of the link, the path is divided into two 
paths with 𝑟 and 𝑛 − 𝑟 nodes (1 ≤ 𝑟 ≤ 𝑛 − 1), when 𝑟 = 1 the path is divided into one 

path and one isolated node. If 𝑟 ≡ 0 (𝑚𝑜𝑑 3) the path is divided into two paths with 3𝑡 and 
𝑛 − 3𝑡 nodes (1 ≤ 𝑡 ≤ 2𝑘 − 2). So, it has 𝛾𝐸𝐶𝐶(𝑃3𝑡) and 𝛾𝐸𝐶𝐶(𝑃𝑛−3𝑡) dominating nodes. 

Implies, 𝛾𝐸𝐶𝐶(𝑃3𝑡) + 𝛾𝐸𝐶𝐶(𝑃𝑛−3𝑡) = 2⎾
3𝑡

6
⏋ + 2⎾

𝑛−3𝑡

6
⏋. For the maximum value of 𝑡, 

𝛾𝐸𝐶𝐶(𝑃3𝑡) + 𝛾𝐸𝐶𝐶(𝑃𝑛−3𝑡) = 2(𝑘 − 1 + 1) = 2(𝑘) = 2 (
𝑛 + 3

6
) 

  = 2 (⎾
𝑛

6
⏋) = 𝛾𝐸𝐶𝐶(𝑃𝑛). 
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If 𝑟 ≢ 0 (𝑚𝑜𝑑 3) the path is divided into two paths with 𝑡 and 𝑛 − 𝑡 nodes (1 ≤ 𝑡 ≤ 6𝑘 −
4, 𝑡 ≢ 0 (𝑚𝑜𝑑 3)). So, it has 𝛾(𝑃𝑡) and 𝛾(𝑃𝑛−𝑡) dominating nodes. Implies, 𝛾(𝑃𝑡) +

𝛾(𝑃𝑛−𝑡) = ⎾
𝑡

3
⏋ + ⎾

𝑛−𝑡

3
⏋. For the maximum value of 𝑡, 

𝛾(𝑃𝑡) + 𝛾(𝑃𝑛−𝑡) = 2𝑘 − 1 + 1 = 2(𝑘) = 2 (
𝑛 + 3

6
) 

       = 2 (⎾
𝑛

6
⏋) = 𝛾𝐸𝐶𝐶(𝑃𝑛). 

Hence, 𝐸(𝑃𝑛) = 𝐸𝐸𝐶𝐶
0  

Subcase 2: If 𝑛 ≡ 2(𝑚𝑜𝑑 6) 

Let 𝑛 = 6𝑘 + 2 for some 𝑘 ∈ ℕ. After the removal of the link, the path is divided into two 
paths with 𝑟 and 𝑛 − 𝑟 nodes (1 ≤ 𝑟 ≤ 𝑛 − 1), when 𝑟 = 1 the path is divided into one 

path and one isolated node. So, it has 1 and 𝛾(𝑃𝑛−1) dominating nodes. Implies, 1 +

𝛾(𝑃𝑛−1) = 1 + ⎾
𝑛−1

3
⏋ = 2(𝑘 + 1) = 2 (

𝑛+4

6
) = 2⎾

𝑛

6
⏋ = 𝛾𝐸𝐶𝐶(𝑃𝑛). Otherwise, the path is 

divided into two paths with 𝑡 and 𝑛 − 𝑡 nodes (2 ≤ 𝑡 ≤ 6𝑘). So, it has 𝛾𝐸𝐶𝐶(𝑃𝑡) and 

𝛾𝐸𝐶𝐶(𝑃𝑛−𝑡) dominating nodes. Implies, 𝛾𝐸𝐶𝐶(𝑃𝑡) + 𝛾𝐸𝐶𝐶(𝑃𝑛−𝑡) = 2⎾
𝑡

6
⏋ + 2⎾

𝑛−𝑡

6
⏋. For 

the maximum value of 𝑡, 

𝛾𝐸𝐶𝐶(𝑃𝑡) + 𝛾𝐸𝐶𝐶(𝑃𝑛−𝑡) = 2(𝑘 + 1) = 2 (
𝑛 + 4

6
) 

  = 2 (⎾
𝑛

6
⏋) = 𝛾𝐸𝐶𝐶(𝑃𝑛). 

Hence, 𝐸(𝑃𝑛) = 𝐸𝐸𝐶𝐶
0  

Subcase 3: If 𝑛 ≡ 1(𝑚𝑜𝑑 6) 

Let 𝑛 = 6𝑘 + 1 for some 𝑘 ∈ ℕ. After the removal of the link, the path is divided into two 
paths with 𝑟 and 𝑛 − 𝑟 nodes (1 ≤ 𝑟 ≤ 𝑛 − 1), when 𝑟 = 1 the path is divided into one 

path and one isolated node. So, it has 1 and 𝛾𝐸𝐶𝐶(𝑃𝑛−1) + 1 dominating nodes. Implies, 

2 + 𝛾𝐸𝐶𝐶(𝑃𝑛−1) = 2 + 2⎾
𝑛−1

6
⏋ = 2(𝑘 + 1) = 2 (

𝑛+5

6
) = 2⎾

𝑛

6
⏋ = 𝛾𝐸𝐶𝐶(𝑃𝑛). Otherwise, 

the path is divided into two paths with 𝑡 and 𝑛 − 𝑡 nodes (2 ≤ 𝑡 ≤ 6𝑘 − 1). So, it has 

𝛾𝐸𝐶𝐶(𝑃𝑡) and 𝛾𝐸𝐶𝐶(𝑃𝑛−𝑡) dominating nodes. Implies, 𝛾𝐸𝐶𝐶(𝑃𝑡) + 𝛾𝐸𝐶𝐶(𝑃𝑛−𝑡) = 2⎾
𝑡

6
⏋ +

2⎾
𝑛−𝑡

6
⏋. For the maximum value of 𝑡, 

𝛾𝐸𝐶𝐶(𝑃𝑡) + 𝛾𝐸𝐶𝐶(𝑃𝑛−𝑡) = 2⎾
6𝑘 − 1

6
⏋ + 2⎾

𝑛 − 6𝑘 + 1

6
⏋ =  2(𝑘 + 1) = 2 (

𝑛 + 5

6
) 

  = 2 (⎾
𝑛

6
⏋) = 𝛾𝐸𝐶𝐶(𝑃𝑛). 

Hence, 𝐸(𝑃𝑛) = 𝐸𝐸𝐶𝐶
0  
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Theorem 4.4: For the cycle graph 𝑛 > 2, 𝐶𝑛 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) on 𝑛 nodes, we have 1 ≤

𝑟 ≤ 𝑛, 1 ≤ 𝑡 ≤ 3,  𝛾𝐸𝐶𝐶(𝐶𝑛 − 𝑣𝑟) = {

𝛾𝐸𝐶𝐶(𝐶𝑛) − 𝑡     𝑖𝑓 𝑉 = 𝑉𝐸𝐶𝐶
−

𝛾𝐸𝐶𝐶(𝐶𝑛)             𝑖𝑓 𝑉 = 𝑉𝐸𝐶𝐶
0

𝛾𝐸𝐶𝐶(𝐶𝑛) + 1     𝑖𝑓 𝑉 = 𝑉𝐸𝐶𝐶
+

  

1. If 𝑛 is even, 𝑉 = 𝑉𝐸𝐶𝐶
𝑜  

2. If 𝑛 is odd and 

I. If 𝑛 ≡ −3, −1 (𝑚𝑜𝑑 18), 𝑉 = 𝑉𝐸𝐶𝐶
𝑜  

II. If 𝑛 ≡ 0 (𝑚𝑜𝑑 9), 𝑉 = 𝑉𝐸𝐶𝐶
+  

III. If 𝑛 ≡ 3,5,7 (𝑚𝑜𝑑 18), 𝑉 = 𝑉𝐸𝐶𝐶
−  and 𝑡 = 1 

IV. If 𝑛 ≡ −7, −5 (𝑚𝑜𝑑 18), 𝑉 = 𝑉𝐸𝐶𝐶
−  and 𝑡 = 2 

V. If 𝑛 ≡ 1 (𝑚𝑜𝑑 18), 𝑉 = 𝑉𝐸𝐶𝐶
−  and 𝑡 = 3 

Proof: let 𝐶𝑛 be the cycle graph, 𝑉(𝐺) = {𝑣𝑟 ∶ 1 ≤ 𝑟 ≤ 𝑛} and 𝐸(𝐺) = {𝑣𝑟𝑣𝑟+1, 𝑣𝑛𝑣1 ∶ 1 ≤

𝑟 ≤ 𝑛 − 1}. 𝜒𝐸(𝐶𝑛) = {
2 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
3 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑  

 and 𝛾𝐸𝐶𝐶(𝐶𝑛) = {
2⎾

𝑛

6
⏋ 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

3⎾
𝑛

9
⏋ 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑  

. Now removal of 

the vertex 𝑉(𝐶𝑛) the cycle is changed to a path with  𝑛 − 1 nodes. 

Case 1: 𝑛 is even 

When 𝑛 is even 𝛾𝐸𝐶𝐶(𝐶𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛) and 𝛾𝐸𝐶𝐶(𝑃𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛−1) which implies 𝛾𝐸𝐶𝐶(𝐶𝑛) =
𝛾𝐸𝐶𝐶(𝑃𝑛−1). Therefore, 𝛾𝐸𝐶𝐶(𝐶𝑛 − 𝑣𝑟) remains unaltered. Hence, 𝑉(𝐶𝑛) = 𝑉𝐸𝐶𝐶

0 . 

Case 2: 𝑛 is odd 

When 𝑛 is odd, after the removal of one node in an odd cycle it becomes an even path. 

Sub Case 1: 𝑛 ≡ −3, −1 (𝑚𝑜𝑑 18) 

Let 𝑛 = 18𝑘 − 3 𝑎𝑛𝑑 18𝑘 − 1, 𝑘 be a natural number. When 𝑛 ≡ −3, −1 (𝑚𝑜𝑑 18), 

𝛾𝐸𝐶𝐶(𝐶𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛) and 𝛾𝐸𝐶𝐶(𝑃𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛−1) which implies 𝛾𝐸𝐶𝐶(𝐶𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛−1). 

Therefore, 𝛾𝐸𝐶𝐶(𝐶𝑛 − 𝑣𝑟) remains unaltered. Hence, 𝑉(𝐶𝑛) = 𝑉𝐸𝐶𝐶
0 . 

Sub Case 2: 𝑛 ≡ 0 (𝑚𝑜𝑑 9) 

Let 𝑛 = 9𝑘, 𝑘 be a natural number. When 𝑛 ≡ 0 (𝑚𝑜𝑑 9), 𝛾𝐸𝐶𝐶(𝐶𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛) − 1 and 
𝛾𝐸𝐶𝐶(𝑃𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛−1) which implies 𝛾𝐸𝐶𝐶(𝐶𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛−1) − 1. Therefore, 𝛾𝐸𝐶𝐶(𝐶𝑛 − 𝑣𝑟) 
is increased by 1. Hence, 𝑉(𝐶𝑛) = 𝑉𝐸𝐶𝐶

+ . 

Sub Case 3: 𝑛 ≡ 3,5,7 (𝑚𝑜𝑑 18) 

Let 𝑛 = 18𝑘 + 3, 18𝑘 + 5 𝑎𝑛𝑑 18𝑘 + 7, 𝑘 be a whole number. When 𝑛 ≡ 3,5 (𝑚𝑜𝑑 18), 

𝛾𝐸𝐶𝐶(𝐶𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛) + 1 and 𝛾𝐸𝐶𝐶(𝑃𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛−1) which implies 𝛾𝐸𝐶𝐶(𝐶𝑛) =
𝛾𝐸𝐶𝐶(𝑃𝑛−1) + 1. When 𝑛 ≡ 7 (𝑚𝑜𝑑 18), 𝛾𝐸𝐶𝐶(𝐶𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛) − 1 and 𝛾𝐸𝐶𝐶(𝑃𝑛) =
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𝛾𝐸𝐶𝐶(𝑃𝑛−1) + 2 which implies 𝛾𝐸𝐶𝐶(𝐶𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛−1) + 1. Therefore, 𝛾𝐸𝐶𝐶(𝐶𝑛 − 𝑣𝑟) is 
decreased by 1. Hence, 𝑉(𝐶𝑛) = 𝑉𝐸𝐶𝐶

− . 

Sub Case 4: 𝑛 ≡ −7, −5 (𝑚𝑜𝑑 18) 

Let 𝑛 = 18𝑘 − 7 𝑎𝑛𝑑 18𝑘 − 5, 𝑘 be a natural number. When 𝑛 ≡ −7 (𝑚𝑜𝑑 18), 𝛾𝐸𝐶𝐶(𝐶𝑛) =
𝛾𝐸𝐶𝐶(𝑃𝑛) + 2 and 𝛾𝐸𝐶𝐶(𝑃𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛−1) which implies 𝛾𝐸𝐶𝐶(𝐶𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛−1) + 2. When 
𝑛 ≡ −5 (𝑚𝑜𝑑 18), 𝛾𝐸𝐶𝐶(𝐶𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛) and 𝛾𝐸𝐶𝐶(𝑃𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛−1) + 2 which implies 

𝛾𝐸𝐶𝐶(𝐶𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛−1) + 2. Therefore, 𝛾𝐸𝐶𝐶(𝐶𝑛 − 𝑣𝑟) is decreased by 2. Hence, 𝑉(𝐶𝑛) =
𝑉𝐸𝐶𝐶

− . 

Sub Case 5: 𝑛 ≡ 1 (𝑚𝑜𝑑 18) 

Let 𝑛 = 18𝑘 + 1, 𝑘 be a natural number. When 𝑛 ≡ 1 (𝑚𝑜𝑑 18), 𝛾𝐸𝐶𝐶(𝐶𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛) + 1 
and 𝛾𝐸𝐶𝐶(𝑃𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛−1) + 2 which implies 𝛾𝐸𝐶𝐶(𝐶𝑛) = 𝛾𝐸𝐶𝐶(𝑃𝑛−1) + 3. Therefore, 
𝛾𝐸𝐶𝐶(𝐶𝑛 − 𝑣𝑟) is decreased by 3. Hence, 𝑉(𝐶𝑛) = 𝑉𝐸𝐶𝐶

+ . 
 
CONCLUSION 

The study of the effect of the removal of a link in any graph theoretic parameter has 
interesting applications in the context of the network. In this paper, a similar study has 

been initiated concerning the Equitable Color Class Domination number for a graph 𝐺. 
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