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Abstract 

Crop yield estimation has significant importance for policy makers to make timely decisions on import/ 
export of particular crop. Another method for determining vegetation health and yield is the use of satellite 
imagery. Although several vegetative indices are being utilized, it is unknown how effective they are at 
estimating yield. This study compared several satellite-based vegetation indices, including the Enhanced 
Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index 
(SAVI), and Modified Soil Adjusted Vegetation Index (MSAVI), to determine which index is most appropriate 
for the central Punjab, Pakistan cropping area. The research focuses on analyzing the correlation between 
these vegetation indices and biomass/biological yield and grain yield. Through scatter plots and regression 
analyses, the study reveals strong positive correlations between these vegetation indices and crop yields, 
demonstrating their effectiveness as indicators for predicting agricultural productivity. SAVI and MSAVI 
showed high reliability in semi-arid regions by minimizing soil brightness effects. EVI, with its additional 
correction for soil and atmospheric influences, proved particularly effective in densely vegetated areas. 
NDVI also showed a significant correlation with crop yield but was found to be less effective in regions with 
sparse vegetation due to its sensitivity to soil reflectance. The results revealed that all vegetation indices 
have a positive correlation with wheat yield, but their predictive power varies. Model-1 of (Wheat Grain 
Yield), which incorporates all four indices, showed the best performance with an R-squared of 0.91 and a 
Pearson correlation of 0.95, indicating a strong fit to the observed data. However, its NSE value of 0.89 
suggests moderate predictive reliability. Among the vegetation indices, NDVI emerged as the most 
significant predictor of yield due to its high positive coefficient in the regression models. These findings 
suggest that the appropriate selection of vegetation indices, considering environmental context, is crucial 
for accurate yield prediction. 

 
1. INTRODUCTION 

The sustainable management of agricultural resources is crucial for ensuring food 
security, particularly in semi-arid regions where water scarcity and unpredictable climatic 
conditions pose significant challenges (Mesquita and Milhorance, 2019). Global warming 
and rising temperatures negatively impact cereal yields, with studies indicating that a 1ºC 
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increase in minimum temperature can reduce cereal production by up to 10% (Rehan et 
al., 2024). In this context, accurate land use classification and yield prediction are 
essential for optimizing agricultural practices and enhancing productivity. In the past, the 
most popular techniques for gathering information on crop nutrition, crop growth, crop 
yield, and soil nutrition were surveys, field sampling, and laboratory analysis. This work 
has mostly been completed in the past. Production managers can gather point data, 
history data, current data, and any other information required in the field of precision 
agriculture to make decisions on variable-rate activities (Farzand et al., 2023). Remote 
sensing technologies, such as Sentinel imagery, coupled with field data, have emerged 
as powerful tools for monitoring crop health, estimating yields, and making informed 
decisions on resource allocation (Debella-Gilo and Gjertsen, 2021). 

Wheat (Triticum aestivum L.) is a staple food crop and a significant contributor to the 
agricultural economy of Pakistan, especially in the Punjab province. Faisalabad, located 
in this province, is characterized by semi-arid conditions with limited and erratic rainfall 
patterns (Fahad et al., 2019). These conditions necessitate the efficient management of 
available resources to maximize wheat yield (SAEED, 2017). However, traditional 
methods of monitoring crop performance and predicting yields often fall short in terms of 
accuracy and timeliness. This gap has led to an increasing interest in integrating remote 
sensing data with ground-based observations to improve the precision of land use 
classification and yield estimation (Xie and Huang, 2021; Guo et al., 2018). 

The use of Sentinel satellite imagery has gained traction in recent years due to its high 
spatial and temporal resolution, which allows for detailed monitoring of crop phenology 
and land use patterns (Gao and Zhang, 2021; Holtgrave et al., 2020). Sentinel-2, with its 
multispectral imaging capabilities, provides critical data for assessing vegetation health 
and classifying land use based on spectral signatures. Additionally, the integration of 
Sentinel-1 radar data, which is less affected by cloud cover, enhances the robustness of 
monitoring in regions prone to frequent cloudiness during key growth stages (De 
Fioravante et al., 2021; De Luca et al., 2022). 

In semi-arid regions like Faisalabad, the challenge lies not only in classifying land use 
accurately but also in predicting wheat yield under variable environmental conditions. 
Several studies have demonstrated the effectiveness of combining remote sensing data 
with machine learning algorithms to model and predict crop yields (Arshad et al., 2023; 
Kanwal et al., 2021). These models leverage the spectral information from Sentinel 
imagery along with ground-truth data, such as soil moisture content, nutrient levels, and 
historical yield records, to produce reliable yield estimates (Ahmad et al., 2018; Ahmad 
et al., 2020). The predictive models are particularly valuable for making timely decisions 
regarding irrigation, fertilization, and pest control, which are crucial for optimizing wheat 
production in resource-limited settings (Qader et al., 2021; Snigdha, 2022). 

Despite the advancements in remote sensing and yield prediction techniques, there is a 
need for localized studies that account for the specific agro-climatic conditions of regions 
like Faisalabad. The variability in soil types, irrigation practices, and cropping systems 
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across different areas within the same region can significantly impact the accuracy of land 
use classification and yield prediction models. Therefore, this research aims to address 
these gaps by utilizing Sentinel imagery and field data to develop a robust framework for 
land use classification and wheat yield prediction in the semi-arid conditions of 
Faisalabad. 
 
2. MATERIAL AND METHODS 

2.1 Study Area 

Study was conducted at Faisalabad division in Central Punjab Pakistan (figure 1) for 
wheat crop during the growing season of 2021-22. The latitude 31.4504° N, longitude 
73.1350° E and the elevation from the sea level 184 m. It has semi-arid climate 
characteristics. A comprehensive survey was conducted in Faisalabad division to collect 
the crop management data from the farmers. Stratified random sampling technique was 
used for the selection of farms. Mobile Agricultural Geo-tagging Information System 
(MAGIS) was used to collect data.    

 

Figure 1: Study Area of Faisalabad Division Punjab Pakistan 

There are two dominant cropping seasons, the summer season commonly called ‘‘kharif” 
that starts from May and ends by October. The winter season called ‘‘rabi” in which sowing 
starts from November and harvesting is completed in April. Wheat is a major rabi crop 
while rice and cotton are major kharif crops. 
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Table 1: Physical and Chemical Properties of the Soils 

 

The data in the table.1 provides information about the physical and chemical properties 
of the soils at Faisalabad. Some key observations can be made: 

i.  Soil Series and Texture: The "SIL" column indicates the soil series, which is a 
classification based on similar characteristics. The combination of particle size 
analysis (sand, silt, clay) and texture class provides insights into the soil's physical 
properties. 

ii.  Soil Drainage and Infiltration: The "SLDR" and "SLINF" columns suggest the soil's 
drainage and infiltration characteristics, which are important for plant growth and 
water retention. 

iii.  Soil Structure and Bulk Density: These properties influence soil aeration, water 
movement, and root penetration. 

iv.  Soil pH: The "8.2" values in the pH column indicate that the soils are slightly alkaline, 
which may affect nutrient availability and plant growth. 

2.2. Field Data 

Ground truth data was collected from various wheat fields in the study area showing in 
figure 1. Different sampling points were selected based on a stratified random sampling 
method. At each sampling point, the following data were collected: wheat yield, soil type, 
soil moisture content, and GPS (Global Positioning System) coordinates. Yield data were 
recorded at the time of harvest, and soil samples were collected for laboratory analysis. 

2.3. Sentinel-2 Data 

Sentinel-2 data was acquired from (https://earthexplorer.usgs.gov) for the period 
corresponding to the wheat growing season, from November 2021 to April 2022. The 
Sentinel-2 data has a spatial resolution of 10 meters and provides multispectral images 
across 13 bands, which are particularly useful for vegetation analysis and land use 
classification. A total of 25 tiles were required to cover the Faisalabad Division of Punjab, 
Pakistan. 

2.4. Crop Data 

Crop data in Pakistan are gathered and distributed by the Crop Reporting Services (CRS) 
and the Provincial Agricultural Department. Additionally, these departments use field 

https://earthexplorer.usgs.gov/
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research, farm visits, and ground truth to create official agriculture statistics on crops. The 
CRS department uses the following hierarchy to display data. 

The source of the crop data was agricultural statistics. At the district and provincial levels, 
CRS interpreters and researchers working under the temporary agricultural department 
convened to gather data on crop acreage, average production, and farming challenges 
faced by farmers (Dempewolf et al., 2014). In this study, we obtained yield data from the 
Provisional Agriculture and CRS department. 

2.5. Vegetation Indices 

Spectral vegetation indices (VIs) are mathematical numerical values that represent 
several spectral bands, primarily in the visible and near-infrared sections of the 
electromagnetic spectrum. These indices provide a comprehensive assessment of leaf 
chlorophyll content, leaf area, optical measurements of canopy greenness, and canopy 
structure. Furthermore, the identification of vegetation patterns and the examination of 
vegetation health are highly beneficial for the surveillance of crop yield and the 
management of natural resources (Ye et al., 2008; Funk and Budde, 2009; Subash et al., 
2011; Reddersen et al., 2014). In this study indices provided in Table 2 were examined. 

NIR, Red, and Blue refer to the spectral brightness measured in the near infrared, red, 
and blue sections of the electromagnetic spectrum. The value of the adjustment factor L 
is contingent upon the vegetation cover. Under thick or heavy vegetation conditions, the 
value is zero, which is equivalent to NDVI. Conversely, for low vegetation, the value is 1.  

Table 2: Selected Functionally Various Vegetation Indices (VIs) 

Index Formula 

NDVI (NIR - RED) / (NIR + RED) 

EVI 2.5 * (NIR - RED) / (NIR + 6RED - 7.5BLUE + 1) 

SAVI (NIR - RED) * (1 + L) / (NIR + RED + L) 

MSAVI 0.5 * (2NIR + 1 – sqrt ((2NIR + 1)2 - 8*(NIR - RED))) 

*L: Soil brightness correction factor (typically 0.5) 

2.6. Wheat Yield Prediction Model 

A regression model was developed to predict wheat yield based on NDVI and other 
vegetation indices derived from Sentinel-2 imagery. The model was calibrated using the 
field data collected at the sampling points. The regression analysis was performed using 
R-studio software, and the model's accuracy was evaluated using the coefficient of 
determination (R²) and Pearson correlation (r), and Nash-Sutcliffe Efficiency (NSE). 

2.7. Methodology 

The terms NIR, Red, and Blue denote the spectral luminosity that is measured within the 
near infrared, red, and blue regions of the electromagnetic spectrum. The specific value 
of the adjustment factor L depends on the level of vegetation cover. Under dense or 
abundant vegetation, the value is zero, which is equal to the Normalized Difference 
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Vegetation Index (NDVI). In contrast, for minimal vegetation, the value is 1. Values of 2.5, 
6, and 7.5 are assigned to the correction factors G, C1, and C2, respectively 
(Bastiaanssen and Ali, 2003). The abbreviations NIR, Red, and Blue refer to the measure 
of spectral luminosity within the near infrared, red, and blue sections of the 
electromagnetic spectrum. The precise magnitude of the adjustment factor L is contingent 
upon the extent of vegetation coverage. In the presence of dense or plentiful vegetation, 
the value is zero, which corresponds to the Normalized Difference Vegetation Index 
(NDVI). Conversely, minimum vegetation yields a value of 1. Specifically, the correction 
factors G, C1, and C2 are assigned values of 2.5, 6, and 7.5, respectively. A regression 
association between measured yield and vegetation indices (NDVI, EVI, SAVI, and 
MSAVI) was established at the heading stage, following the technique proposed by 
Bastiaanssen et al. (1999) given in Eq. (1). 

YRS = m Wheat (Vegetation Indices) + c                                      (1) 

where YRS denotes the wheat yield based on remote sensing, m and c depicts the 
corresponding slope and intercepting parameters of above regression equations found 
by replacing the yield and average Wheat(NDVI) or Wheat(SAVI) or Wheat(MSAVI) or 
Wheat (EVI) values (From Provisional Agriculture Department and CRS) at the crop 
heading stage respectively.  
 
3. RESULTS AND DISCUSSIONS 

3.1. Correlation between Soil Adjusted Vegetation Index (SAVI) and 
Biomass/Biological Yield (Y): 

The scatter plot in Figure 2 shows a fitted regression line showing the relationship 
between the Soil Adjusted Vegetation Index (SAVI) and the variable "y" (which is Biomass 
or Biological Yield. 

a) Positive Correlation between SAVI and Biological Yield (Y): 

The scatter plot demonstrates a clear positive linear relationship between SAVI and the 
variable "y" (Biomass or Crop Yield) Figure 2. The points are scattered around the 
regression line with some variability, indicating that while there is a general trend of 
increasing yield (y) with increasing SAVI values, there is also some degree of variation 
that could be attributed to other factors. The confidence interval shaded around the 
regression line shows the uncertainty of the prediction; narrower intervals indicate more 
reliable predictions in certain SAVI ranges. 

b) Statistical Significance of the Relationship: 

In figure 2 the positive slope of the regression line suggests that as SAVI increases, there 
is a corresponding increase in yield. This observation aligns with the expected behavior 
since SAVI is designed to minimize the effects of soil background, which is crucial in 
areas with varying soil conditions. If the p-value of the regression slope is significant 
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(typically less than 0.05), it can be concluded that SAVI is a significant predictor of yield 
in the study area. 

c) Effectiveness of SAVI as A Predictor of Yield: 

The positive relationship between SAVI and yield implies that SAVI is an effective 
indicator for estimating crop biomass or yield in the study area. This finding is consistent 
with previous research that highlights SAVI's ability to account for soil influences, making 
it more robust in environments with sparse vegetation or exposed soil surfaces Huete, 
(1988). 

d) Implications for Precision Agriculture: 

The ability to use SAVI as a predictor of crop yield has significant implications for precision 
agriculture. By integrating SAVI-based remote sensing data with other agronomic and 
environmental variables, farmers and decision-makers can better manage crop inputs, 
optimize yield, and promote sustainable agricultural practices Mulla, (2013). 

e) Comparison With Other Vegetation Indices: 

While SAVI has shown a strong correlation with yield, it is important to compare this with 
other indices like EVI or NDVI to determine the most suitable index for yield prediction in 
different conditions. SAVI's advantage in areas with significant soil exposure may be 
complemented by the use of indices like MSAVI, which further adjusts for soil brightness 
Qi et al.,(1994). 

 

Figure 2: Correlation between SAVI and Biological Yield (Y) 

3.2.  Correlation between Modified Soil Adjusted Vegetation Index (MSAVI) and 
Biomass/Biological Yield (Y): 

The scatter plot with a regression line showing the relationship between the Modified Soil 
Adjusted Vegetation Index (MSAVI) and biological yield (Y) figure 3. 
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a) Positive Correlation between MSAVI and Biological Yield (Y): 

The scatter plot (figure 3) indicates a positive linear relationship between MSAVI and 
biological yield (Y). As MSAVI values increase, there is a corresponding increase in 
biological yield. The points are scattered around the regression line, but the positive slope 
suggests that higher MSAVI values are associated with higher yields. The shaded region 
around the regression line represents the confidence interval, indicating the uncertainty 
of the regression predictions. A relatively narrow interval suggests a reliable predictive 
relationship between MSAVI and biological yield for most of the observed range. 

b) Utility of MSAVI IN Yield Prediction: 

The positive association between MSAVI and biological yield indicates that MSAVI, which 
adjusts for soil brightness and reduces the influence of soil background, is an effective 
index for monitoring crop health and predicting yield. This is particularly useful in regions 
like Faisalabad Division, where soil conditions vary and vegetation cover may be sparse 
or heterogeneous Qi et al. (1994).  .The strong relationship observed here between 
MSAVI and biological yield supports the findings of previous studies, which have shown 
MSAVI’s effectiveness in minimizing soil noise in remote sensing data, making it a 
valuable tool for precision agriculture Rondeaux et al., (1996). 

c) Implications for Agricultural Management: 

The use of MSAVI for yield prediction can significantly improve the precision of 
agricultural management practices, particularly in managing fertilization, irrigation, and 
other inputs tailored to the specific needs of different field zones. The integration of 
MSAVI in yield models can help optimize resource use and increase productivity while 
promoting sustainable practices Thenkabail et al., (2000). 

 

Figure 3: Correlation between MSAVI and Biological Yield (Y) 
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3.3.  Correlation between Modified Enhanced Vegetation Index (EVI) and 
Biomass/Biological Yield (Y) 

a) Analysis of Biological Yield and EVI: 

The scatterplot figure 4 demonstrates a strong positive linear relationship between 
Biological Yield (Y) and Enhanced Vegetation Index (EVI). This suggests that as EVI 
values increase, biological yield tends to increase as well. The regression line and 
confidence interval provide a clear visual representation of this relationship. 

b) Ecological Implications: 

EVI is a widely used vegetation index that measures the greenness of vegetation, and it 
has been shown to be a reliable indicator of plant growth and productivity. The results of 
this analysis suggest that EVI can be effectively used as a proxy for biological yield Wang, 
(2017). 

 

Figure 4: Correlation between EVI and Biological Yield (Y) 

3.4. Correlation between Different Vegetation Indices and Biomass/Biological Yield 
(Y)  

The scatterplot matrix in (figure 5) shows a series of pairwise relationships between BLY 
and vegetation indices such as EVI, SAVI, and MSAVI. There appears to be a positive 
correlation between BLY and each of the vegetation indices (EVI, SAVI, MSAVI), as 
indicated by the upward trend in the scatterplots. This suggests that as the values of these 
vegetation indices increase, the biomass or crop yield (BLY) tends to increase as well. 
The scatterplot between EVI and BLY, SAVI and BLY, and MSAVI and BLY show 
relatively tighter clustering, indicating a stronger relationship. The positive correlations 
between BLY and the vegetation indices (EVI, SAVI, MSAVI) indicate that these indices 
can be effective predictors of crop yield. In particular, the strong correlation with EVI 
suggests it might be a reliable indicator for estimating crop biomass or yield during the 
wheat growing season. This finding aligns with the work of Huete et al. (2002), who 
demonstrated the utility of EVI in accurately reflecting vegetation dynamics due to its 
reduced sensitivity to atmospheric and soil background conditions. 
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a) Inter-Correlation Among Vegetation Indices (EVI, SAVI, MSAVI, NDVI) with 
Biological Yield (BLY): 

The relationships among EVI, SAVI, NDVI and MSAVI show strong positive correlations, 
which is expected as these indices are derived from similar spectral bands and are often 
used for similar purposes (e.g., vegetation monitoring). The scatterplots between these 
indices form a roughly linear pattern, which supports the idea that they are highly 
correlated. While EVI and MSAVI both show strong correlations with BLY, MSAVI may 
have a slight advantage in conditions where soil influence is significant, as suggested by 
Qi et al. (1994). MSAVI incorporates a soil brightness correction factor, making it 
potentially more robust in arid and semi-arid environments like Faisalabad Division. 

 

Figure 5: Scatterplot matrix displaying the relationships among different 
vegetation indices with biological yield (BLY) 

3.5. Correlation between Soil Adjusted Vegetation Index (SAVI) and Grain Yield (Y) 

The scatter plot presented in figure 6 illustrates the relationships between Soil-Adjusted 
Vegetation Index (SAVI) and grain yield (Y). 

a)  Relationship between SAVI and Grain Yield (Y): 

The scatter plot shows a positive linear relationship between SAVI and grain yield, 
indicating that as SAVI increases, grain yield also increases (figure 6). The regression 
line suggests a relatively strong correlation, with most data points closely following the 
trend line. 

SAVI is specifically designed to minimize the influence of soil brightness, making it more 
suitable for areas with sparse vegetation where soil reflectance might otherwise distort 
measurements (Huete, 1988). The positive correlation observed between SAVI and grain 
yield indicates that healthier vegetation, as signaled by higher SAVI values, is associated 
with higher grain yields. This suggests that SAVI could be a reliable indicator for predicting 
crop performance, particularly in regions with varying soil backgrounds where other 
indices like NDVI might be less effective. SAVI's ability to account for soil reflectance 
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provides more accurate estimates of vegetation health and productivity in semi-arid and 
arid regions (Huete et al., 2002).  

 

Figure 6: Correlation between SAVI and Grain Yield (Y) 

3.6. Relationship between NDVI and Grain Yield:  

The plot (figure 7) demonstrates a clear positive correlation between NDVI and grain 
yield, similar to the SAVI plot. The trend line shows a strong linear relationship, with data 
points scattered around the line but still maintaining a discernible pattern. NDVI is one of 
the most widely used vegetation indices for assessing vegetation health by measuring 
the difference between near-infrared (which vegetation strongly reflects) and red light 
(which vegetation absorbs) (Rouse et al., 1974). The strong correlation between NDVI 
and grain yield supports the notion that NDVI can be effectively used to monitor crop 
health and predict yields. Higher NDVI values correspond to healthier, more productive 
crops, which directly translates to increased grain yields. This index is highly valuable in 
precision agriculture applications where continuous monitoring of crop growth conditions 
is essential for timely management interventions (Tucker, 1979). 

 

Figure 7: Correlation between NDVI and Grain Yield (Y) 
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3.7. Relationship between EVI and Grain Yield (Y): 

The EVI plot also shows a positive linear relationship with grain yield. The data points are 
well aligned with the regression line, suggesting a strong correlation figure 8.  

EVI is designed to enhance the vegetation signal with improved sensitivity in high 
biomass areas and reduced atmospheric influences (Huete et al., 2002). Unlike NDVI, 
EVI uses additional blue band reflectance to correct for soil background signals and 
atmospheric effects, making it particularly useful in areas with dense vegetation where 
NDVI tends to saturate. The strong correlation observed in the plot suggests that EVI, like 
NDVI, MSAVI and SAVI, is a reliable predictor of grain yield. This is particularly relevant 
in regions with diverse vegetation cover, where EVI can outperform NDVI by reducing 
saturation effects and providing a more accurate representation of vegetation health and 
productivity (Jiang et al., 2008). 

 

Figure 8: Correlation between EVI and Grain Yield (Y) 

3.8. Relationship between MSAVI and Grain Yield (Y): 

The scatter plot shows a positive linear relationship between MSAVI and grain yield, 
indicating that as MSAVI values increase, grain yield also increases in figure 9. The 
regression line suggests a strong correlation, with most data points closely following the 
trend line. This alignment of data points around the regression line reflects the reliability 
of MSAVI in capturing the variations in grain yield. 

MSAVI is a modified version of the Soil-Adjusted Vegetation Index (SAVI) and is designed 
to further reduce the influence of soil brightness, especially in regions where vegetation 
cover is low or the soil surface is exposed (Qi et al., 1994). The positive correlation 
between MSAVI and grain yield observed in this study suggests that MSAVI is effective 
in distinguishing healthy vegetation from less productive areas, which translates to higher 
grain yields. This makes MSAVI a robust indicator for predicting crop performance, 
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particularly in heterogeneous agricultural landscapes where soil background effects are 
a concern. The use of MSAVI is advantageous in semi-arid and arid environments, where 
soil reflectance can significantly impact the accuracy of other vegetation indices like NDVI 
(Qi et al., 1994; Huete, 1988). 

 

Figure 9: Correlation between MSAVI and Grain Yield (Y) 

3.9. Correlation between Vegetation Indices and Grain Yield (GNY): 

a) Analyzing the Scatterplots: A Visual Exploration of Different Vegetation Indices: 

The figure 10 represents the relationship between the variable grain yield (GNY) and four 
different vegetation indices: NDVI, EVI, SAVI, and MSAVI. Each scatterplot provides 
visual insight into how these vegetation indices correlate with GNY values. The 
interpretation of these scatterplots is as follows: 

b) NDVI (Normalized Difference Vegetation Index) VS. GNY: 

The scatterplot shows a positive correlation, where higher GNY values are associated 
with higher NDVI values (figure 10). This suggests that as GNY increases, vegetation 
health, as indicated by NDVI, improves. NDVI is widely recognized as a measure of 
vegetation greenness and is sensitive to changes in vegetation cover and health (Tucker, 
1979). 

b) EVI (Enhanced Vegetation Index) VS. GNY: 

The EVI scatterplot in (figure 10) also shows a positive correlation, but the trend might be 
more pronounced or distinct compared to NDVI. EVI is designed to optimize the 
vegetation signal with improved sensitivity in high biomass regions and is less affected 
by atmospheric conditions (Huete et al., 2002). 

c) SAVI (Soil-Adjusted Vegetation Index) VS. GNY: 

The SAVI scatterplot indicates a positive correlation similar to NDVI but is adjusted to 
minimize soil brightness influence in (figure 10). This is particularly useful in areas where 
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soil brightness affects vegetation signals (Huete et al., 2002). The trend line appears less 
steep than NDVI or EVI, suggesting SAVI’s specific suitability in semi-arid or soil-exposed 
regions. 

d) MSAVI (Modified Soil-Adjusted Vegetation Index) VS. GNY: 

The MSAVI scatterplot shows a positive correlation (figure 10), possibly stronger than 
that observed for SAVI. MSAVI further minimizes soil noise, making it highly useful for 
vegetation monitoring in areas with significant soil background influence (Qi et al., 1994). 

Overall, all scatterplots show positive correlations between GNY and the vegetation 
indices, suggesting that GNY is positively related to vegetation health as represented by 
these indices. 

 

Figure 10: Scatterplot Matrix Displaying the Relationships among Different 
Vegetation Indices with Grain Yield (GNY) 

3.10.  Regression Models to Predict Biological Yield of Wheat Based on Various 
Vegetation Indices: 

The figure 11 presents four regression models that predict wheat biological yield based 
on various vegetation indices: EVI, MSAVI, NDVI, and SAVI. Each model includes a 
regression equation and corresponding statistical metrics (R-squared, Pearson 
correlation coefficient, and Nash-Sutcliffe Efficiency). 

Multiple Models: Different combinations of vegetation indices were used to develop the 
models, suggesting that multiple factors influence wheat biological yield. 

Varying Performance: The statistical metrics indicate varying model performance. 
Model-1of Wheat Biological Yield (using all four indices) achieved the highest R-squared 
(0.58) and Pearson correlation (0.93), suggesting the best fit to the data. However, its 
NSE value (0.78) was moderate. 
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Index Importance: The coefficients in the regression equations reveal the relative 
importance of each vegetation index in predicting yield. For example, in Model-1of (Wheat 
Biological Yield), SAVI has the highest positive coefficient, indicating its strong positive 
relationship with yield. 

 

Figure 11: Wheat Biological Yield Forecasting Models 

3.11.  Regression Models To Predict Grain Yield of Wheat Based on Various 
Vegetation Indices: 

The figure 12 presents four regression models that predict wheat grain yield based on 
various vegetation indices: EVI, MSAVI, NDVI, and SAVI. Each model includes a 
regression equation and corresponding statistical metrics (R-squared, Pearson 
correlation coefficient, and Nash-Sutcliffe Efficiency). 

Multiple Models: Different combinations of vegetation indices were used to develop the 
models, suggesting that multiple factors influence wheat grain yield. 

Varying Performance: The statistical metrics indicate varying model performance. 
Model-1 of (Wheat Grain Yield) using all four indices, achieved the highest R-squared 
(0.91) and Pearson correlation (0.95), suggesting the best fit to the data. However, its 
NSE value (0.89) was moderate. 

Index Importance: The coefficients in the regression equations reveal the relative 
importance of each vegetation index in predicting yield. For example, in Model-1of (Wheat 
Grain Yield), NDVI has the highest positive coefficient, indicating its strong positive 
relationship with yield. 
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Figure 12: Wheat Grain Yield Forecasting Models 
 
5. CONCLUSION 

This research demonstrates the effectiveness of using various vegetation indices—EVI, 
MSAVI, NDVI, and SAVI—derived from Sentinel-2 multispectral imagery for predicting 
wheat biological and grain yield in the Faisalabad Division, Punjab, Pakistan. The study 
developed several regression models incorporating these indices and evaluated their 
performance using statistical metrics such as R-squared, Pearson correlation coefficient, 
and Nash-Sutcliffe Efficiency (NSE). 

The results indicate that all vegetation indices have a positive correlation with wheat yield, 
but their predictive power varies. Model-1 of (Wheat Grain Yield), which integrates all four 
indices, exhibited the best performance with the highest R-squared (0.91) and Pearson 
correlation (0.95), indicating a strong relationship between the indices and yield. 
However, the model's NSE value (0.89) was moderate, suggesting some room for 
improvement in predictive reliability. Among the indices, NDVI was identified as the most 
significant predictor of yield, as reflected by its high positive coefficient in the regression 
models. 

The findings highlight the potential of using remote sensing-based vegetation indices for 
accurate and efficient wheat yield prediction, which is crucial for precision agriculture. The 
study suggests that combining multiple indices can enhance model accuracy and 
reliability, especially in regions with diverse soil and vegetation conditions. However, the 
choice of the best model depends on the specific application, balancing between 
complexity and usability. 

To further improve yield predictions, future research should consider integrating 
additional variables, such as soil properties, climatic factors, and management practices, 
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as well as exploring spatial variability and conducting sensitivity analyses. Such 
advancements could lead to more robust and operational models for supporting 
sustainable agricultural practices and optimizing crop management. 

Overall, this research provides valuable insights into the application of advanced 
regression modeling and remote sensing techniques for agricultural yield prediction, 
offering a pathway for improving decision-making in agricultural management. 
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