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ABSTRACT 

A novel method has been proposed for a single image dehazing technique to dehaze both daytime and 
night-time hazy scenes. Inverting the popular Koschmieder optical image formation model (KOIF) [10] with 
dark channel [18], the airlight on image patches is light, but large patches for accurate airlight estimation 
by increasing the possibility assessed and not on the entire image. Local airlight estimation is incorporated 
for night-time conditions with the nonuniform lighting from multiple localized artificial sources [32]. Patch 
Size selection is significant, small patches for fine spatial adaptation to atmospheric of capturing pixels with 
airlight appearance (due to severe haze). To alleviate the said problem, airlight is estimated as the brightest 
pixel from medium order statistic filter (MOSF) refined transmission map. The depth map is improved with 
the Minimum Order Statistics filter (MOSF) [37], which in turn improves the transmission map. Finally, a 
clear image is derived by inverting the KOIF model. The radiance is improved with a low light image 
enhancement technique [31]. Extensive experimental results established the effectiveness of the proposed 
approach as compared with recent techniques, both in terms of computational efficiency and the quality of 
the outputs.A novel parallel atmospheric light and depth map estimation concept has been implemented 
for faster operation. 

Keywords- Airlight, haze, dehazing, MOSF, KOIF, Image Formation Optical Model, MOSF, PSNR, SSIM, 
NIQE, BRISQUE. 

1. Introduction 

In computer vision applications (object tracking and detection for autonomous driving), 
dehazing is a fundamental preprocessing step for the performance improvement in 
scenes with excessively sensitive atmospheric and illumination conditions [1, 2, 6-11, 18]. 
With the advent of deep learning, the performance of dehazing algorithms is showing 
exceptional improvements. Still, poor illumination creates dehazing algorithms that are 
ineffective. Hence, low-light enhancement is an additional requirement with dehazing 
algorithms to improve the performance of high-level vision applications. Dehazing and 
low-light enhancement have been studied individually in literature[31,38, 39].To conduct 
supervised deep learning, it is a challenge to collect training data with pairs of hazy and 
haze-free images of the same scenes. Moreover, the ground truth hazy images with low-
light pixels are difficult to obtain. To address this challenge, a novel technique has been 
proposed where inverting KOIF with refined MOSF [37] depth map estimation followed by 
low light image enhancement [31] as shown in figure 1 with the block diagram of the 
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proposed method.  Hence, the proposed technique is able to clear effectively hazy images 
under different weather conditions. Low-light enhancement can effectively eradicate 
image brightness problems occurring with traditional image dehazing algorithms taking 
care of colour saturation problems. A novel parallel atmospheric light and depth map 
estimation concept has been implemented for faster operation in figure 2 which reduces 
computational steps saving run time. The contributions from this work are threefold: i) a 
unified framework for dehazing network with dehazing and low-light enhancement of 
images that prevents dehazed images brightness issues after removing the haze; ii) 
parallel estimation of atmospheric light and depth map toreduce processing cost for run 
time; iii) MOSF refine depth map effectively in the linear combination. The paper is 
organized as follows. In Section II, studies on dehazing and low light image enhancement 
are discussed. A new framework for dehazing with low-light enhancement is introduced 
in Section III. Experimental results are provided in Section IV. Discussion of the proposed 
method withweaknesses and future works are presented in Section V. 

2. RELATED WORK 

2.1. Dehazing  

Dehazing techniques are the research hotspot recently. Single-image dehazing out of all 
dehazing techniques is gaining huge attention due to its ill-posed convex nature and large 
application domain where single image is the only source of information [1, 2, 6-11]. 
Single image dehazing Dark Channel prior (DCP) algorithm [18] shows impressive 
dehazing results for haze features [4, 22]. A random-forest-based regression model with 
multiple haze-relevant features has been employed in Tang et. al. [4]. Deep learning 
convolutional neural network (CNN)-based dehazing methods are found popularity in 
recent years [5, 21, 22, 29]. Still, non-deep learning algorithms are also being studied: in 
[20] haze-free images with very natural colors are developed with color-line termed as 
color restoration. Haze-Line also yields accurate haze-removal results in [21]. Kim et al. 
proposed an effective estimation of atmospheric light using quad-tree searching [40]. 
Chen et al. surpassed artifacts developed from dehazing using gradient residual 
minimization [41]. Ancuti et al. proposed a semi-inverse method and a multi-scale fusion 
method using multiple features for haze removal [42, 43]. In He et al. [18], the dehazing 
problems are mitigated with convex optimal solutions in the wavelet domain. Kim et. al. 
considered illumination as pixel-wise atmospheric light using the retinex theory [44]. Zhu 
et al. developed a new prior “color attenuation prior (CAP)” [45]. The transmission with 
boundary constraints and contextual regularization was estimated by Meng et. al. [19]. 
Choi et al. proposed a haze-measurement method for dehazing [46]. Cai et al. presented 
DehazeNet [29] using an end-to-end dehazing method with regression networks. Ren et 
al. developed coarse-to-fine multi-scale CNNs [22]. In AOD-Net [47], the atmospheric 
scattering model was redeveloped with an end-to-end trainable model effective for 
dehazing and object detection. Ling et al. developed synthetic haze images examining 
the light wavelength of each color channel [48]. A novel fusion method with white 
balancing, contrast-enhancing, and gamma correction was developed by Ren et. al. [49]. 
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Dense connection and pyramid modules remove hazy regions in Zhang et. al. [50]. Lately, 
Liu et al. developed the best quantitative results on a synthetic haze dataset [51]. Unlike 
the above-mentioned methods, our proposed approach performs dehazing and low-light 
enhancement in a unified framework based on an illumination map. 

3. Methodology Applied 

3.1 Low-Light Enhancement  

In recent times, low light image enhancement has been studied [38]. High dynamic-range 
algorithms, like multi-exposure image fusion [52] and single-image contrast enhancer 
[53], enhance the image quality with multiple exposure images. Dong et al. inverted low-
light images followed by the haze model [54]. Lately, deep learning-based methods like 
MSRNet [55] and LLNet [56] have attained significant improvements in low-light image 
enhancement algorithms. LightenNet [57] directly collects the illumination map from a 
convolutional neural network (CNN). In [58], the illumination is estimated indirectly using 
gradients and color constancy and in LIME [59], the illumination map is also used. The 
uniqueness of the proposed method is its fast and effective approach. 

3.2 Proposed Model 

 

 

Fig. 1. Block Diagram of the Proposed Model. 

 

 

Fig. 2. Block Diagram of the Parallel Transmission and Atmospheric Light 
Estimation in fig. 1. 

 

 

 

3.2.1 Proposed Method 

KOIF [10] is represented as: 
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𝐼(𝑥) = 𝐽(𝑥)𝑡(𝑥) + 𝐴(1 − 𝑡(𝑥)).                                                                   (1) 

where I, J, A, and t define a hazy image, a haze-free image, atmospheric light, and 
transmission, respectively. The haze- free image is realized by solving (1) for J:  

𝐽(𝑥) =
𝐼(𝑥)−𝐴

𝑡(𝑥)
+ 𝐴.                                                                   (2) 

Transmission is estimated by inverting the depth map which is the minimum of three RGB 
channels refined by MOSF [37]. Many high-level vision tasks require a clean image on a 
real time basis. But in many situations, clear images may not be found on a real time 
basis or maybe possible with expensive installed devices. In this proposed approach, a 
simple and effective method has been devised without the requirement of high-end 
devices.  

1. Depth map estimation with MOSF in KOIF model with low computational complexity 
O(N). 

2. Parallel atmospheric light and transmission estimation reduce computational steps. 
3. Low light image enhancement procedures improve weakly illuminated regions without 

disturbing the clearly illuminated areas from saturation and color distortion. 

3.2.2 Parallel Atmospheric light and Transmission Estimation from Depth map  

Atmospheric light is estimated 1% of the top [6, 7, 8, 9, 18, 37]. But this requires a 
separate step. To eliminate this separate step, atmospheric light is estimated while the 
transmission map is estimated with maximum bright pixels. 

3.2.3 Scene Radiance retrieval 

Scene radiance is obtained by the KOIF model [10]. 

3.2.4 Low Light Enhancement 

The brightness of the image reduces after KOIF operation [6, 7, 8, 9, 18, 37]. This is 
adjusted with the low light enhancement model [31]. 

4. Experiment 

 The proposed method is implemented by MATLAB R2018a on a PC with 2.8 GHz Intel 
Core 2 Duo Processor. The proposed model experimented with O-Haze dataset [17], and 
[18] to conduct a comprehensive evaluation of the state-of-the-art single image dehazing 
techniques presented. In Figure 3, Qualitative results analysis for depth estimation of the 
proposed LLI-Dehazing. (a) Input Hazy Image, (b) MOSF image, (c) Koschmiederimage, 
(d) MOSF KoschmiederImage, (e) Low Light Enhanced Image.  Fig. 4. shows qualitative 
results analysis for scene radiance estimation of the proposed LLI-Dehazing with (a) Input 
Hazy Image, (b) MOSF image, (c) Koschmiederimage, (d) MOSF Koschmieder Image, 
(e) Low Light Enhanced Image.  Figure 4 illustrates one scene [18] as input with the 
proposed model and each step output has been extracted and compared qualitatively 
and quantitatively w.r.t hazy counterpart as shown in tables II. In figure 5, hazy images 
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[17] is tested with Ground Truth (GT), other state-of-the-art mentors [17, 18, 19, 20, 21, 
22, 29], and proposed. Its parametric evaluation is shown in table III. 

4.1. Parametric Evaluator used 

TABLE 1 
PARAMETER USED FOREVALUATION 

 
4.2Dataset: 

The O-Haze dataset is used for the experiment [17]. Day-time:Night-time: 

4.3. Results: 
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TABLE2 

Qualitative results analysis for scene radiance estimation of the proposed LLI-Dehazing. 
(a) Input Hazy Image, (b) MOSF image, (c) Koschmiederimage, (d) MOSF Koschmieder 
Image, (e) Low Light Enhanced Image as in figure 4. 

 

 

TABLE3 

Quantitative comparison with state-of-the-art dehazing methods using full reference and 
no-reference image quality measure as in the figure. 5 (red, green, and blue as best, 
good, better result respectively). 

 

4.4. Complexity Assessment 

Computational complexity plays an important role in measuring the fast processing of an 
algorithm [8]. Figure 6 shows the complexity of each block of the proposed model 
following the total computational complexity of the model. 
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Figure 7 shows satisfactory dehazing performance with the proposed algorithm. Thus, 
the proposed technique can effectively improve visibility in all types of weather and 
illumination conditions.  

5. Discussion 

In this paper,an effective technique has been introducedto enhance both daytime and 
night-time hazy scenes.The depth map is refined through MOSF which finally improves 
the transmission map.In contrast to previous techniques, airlightis estimatedas the 
brightest pixel from the MOSF refined transmission map in parallel with depth map 
estimation saving extra computational steps.Inverting the KOIF [10]model, scene 
radiance is retrieved. To overcome the poor illumination effect, low light image 
enhancement has been incorporated which can be effective for day-time as well as night-
time dehazing.The experimental results demonstrate the superiority of the 
proposedmethod compared with the recent techniques both for day and night time hazy 
scenes. To alleviate the said problem, airlight is estimated as the brightest pixel from the 
medium order statistic filter (MOSF) refined transmission map. Finally, a clear image is 
derived by inverting the KOIF model. The radiance is improved with a low light image 
enhancement technique [31]. Extensive experimental results established the 
effectiveness of the proposed approach as compared with recent techniques, both in 
terms of computational efficiency and the quality of the outputs. A novel parallel 
atmospheric light and depth map estimation concept has been implemented for faster 
operation. 

Shortcomings-As the proposed model obscures original scene radiance by inverting 
KOIF, which is an ill-posed inverse problem with multiple results. For getting good results, 
much more possibilities are there. 

Future scope-In the future, better results may be generated by modifying the proposed 
algorithmand experimenting with different path sizes of MOSF. 
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