CONNECTEDNESS AND COMPACTNESS VIA INTUITIONISTIC SEMI * OPEN SETS

G. ESTHER RATHINAKANI

Research Scholar, PG and Research Department of Mathematics, Kamaraj College, Thoothukudi, Tamilnadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelvei, Tamilnadu, India. Reg. No. 19222102092011, E-mail: estherrathinakani@gmail.com

M. NAVANEETHAKRISHNAN

Associate Professor, PG and Research Department of Mathematics, Kamaraj College, Thoothukudi, Tamilnadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelvei, Tamilnadu, India. E-mail: navaneethan65@yahoo.co.in

Abstract

In this article certain kinds of intuitionistic semi * connectedness and intuitionistic semi * compactness are defined in intuitionistic topological space and their characteristics are investigated. Here we introduce intuitionistic semi * connectedness, intuitionistic semi * C_i - connectedness (i = 1,2,3,4,5), intuitionistic semi * compactness and obtain many properties.

Index Terms: intuitionistic semi * connectedness, intuitionistic semi * C_i- connectedness, intuitionistic semi * compactness intuitionistic semi * open, intuitionistic semi * closed, IS*O, IS*C.

1. INTRODUCTION

Atanassov [6] is the person who first presented the idea of intuitionistic set. After that this concept is generalized to intuitionistic sets in [1], [2] and intuitionistic topological spaces in [3]. An idea of intuitionistic connectedness and intuitionistic compactness in intuitionistic topological space is given in [5]. In this article we establish the concepts of intuitionistic semi * connectedness, intuitionistic semi * C_i - connectedness, intuitionistic semi * compactness, intuitionistic semi * lindelof spaces. Also we encounter their basic properties and explore their relationship with already existing concepts.

2. PRIME NEEDS

Definition 2.1. Let X be a nonempty fixed set. An intuitionistic set (IS in short) \tilde{A} is an object having the form $\tilde{A} = \langle X, {}^{(1)}, {}^{(2)} \rangle$ where ${}^{(1)}$ and ${}^{(2)}$ are subsets of X such that $A^{(1)} \cap A^{(2)} = \emptyset$. The set ${}^{(1)}$ is called the set of member of \tilde{A} , while $A^{(2)}$ is called the set of non-member of \tilde{A} .

Definition 2.2. Let X be a non empty set, $\tilde{A} = \langle X, {}^{(1)}, {}^{(2)} \rangle$ and $\tilde{B} = \langle X, {}^{(1)}, {}^{(2)} \rangle$ be an IS sets and let { $\tilde{A}_i : i \in j$ } be arbitrary family of IS, where $\tilde{A}_i = \langle X, A_i^{(1)}, A_i^{(2)} \rangle$.

Then the following results are hold.

- i. $\tilde{A} \subseteq \tilde{B}$ if and only if $^{(1)} \subseteq ^{(1)}$ and $^{(2)} \subseteq ^{(2)}$.
- ii. $\tilde{A} = \tilde{B}$ if and only if $\tilde{A} \subseteq \tilde{B}$ and $\tilde{B} \subseteq \tilde{A}$.
- iii. $\overline{\tilde{A}} = \langle X, {}^{(2)}, {}^{(1)} \rangle$ is called the complement of \tilde{A} . It is aslo denoted by $X \tilde{A}$.
- iv. $\cup \tilde{A}_i = \langle X, \cup A_i^{(1)}, \cap A_i^{(2)} \rangle$.
- v. $\cap \tilde{A}_i = \langle X, \cap A_i^{(1)}, \cup A_i^{(2)} \rangle$.
- vi. $\tilde{A} \tilde{B} = \tilde{A} \cap \overline{\tilde{B}}$.
- vii. $\widetilde{\emptyset}_{I} = \langle X, \emptyset, X \rangle$ and $\widetilde{X}_{I} = \langle X, X, \emptyset \rangle$.

Definition 2.3. An intuitionistic topology (IT in short) by subsets of a nonempty set X is a family τ of IS's satisfying the following axioms.

- (a) $\widetilde{\emptyset}_{I}$, $\widetilde{X}_{I} \in \tau$
- (b) $\tilde{G}_1 \cap \tilde{G}_2 \in \tau$ for every \tilde{G}_1 , $\tilde{G}_2 \in \tau$
- (c) $\cup \tilde{G}_i \in \tau$ for any arbitrary family { $\tilde{G}_i : i \in J$ } $\subseteq \tau$.

The pair (*X*, τ) is called an intuitionistic topological space (ITS in short) and any IS \tilde{A} in τ is called an intuitionistic open set (IOS). The complement of an IOS \tilde{A} in τ is called an intuitionistic closed set (ICS)

Definition 2.4. Let X be a nonempty set and $p \in X$ be a fixed element. Then the IS \tilde{p}_i (resp. p_{iV}) defined by $\tilde{p}_i = \langle X, \{p\}, \{p\}^c \rangle$ (resp. $\tilde{p}_{iV} = \langle X, \emptyset, \{p\}^c \rangle$ is called an intuitionistic point (resp. intuitionistic vanishing point).

Definition 2.5. Let (X, τ) be an ITS and $\tilde{A} = \langle X, A^1, A^2 \rangle$ be an IS in X, \tilde{A} is said to be intuitionistic generalized closed set (briefly Ig – closed set) Icl(\tilde{A}) $\subseteq \tilde{U}$ whenever $\tilde{A} \subseteq \tilde{U}$ and \tilde{U} is IO in X.

Definition 2.6. If \widetilde{A} is an IS of an ITS (X, τ), then the intuitionistic generalized closure of \widetilde{A} is is denoted by Icl^{*}(\widetilde{A}) and is defined as Icl^{*}(\widetilde{A}) = { \widetilde{E} : \widetilde{E} is Ig – closed set and $\widetilde{A} \subseteq \widetilde{E}$ }.

Definition 2.7.

- i. Intuitionistic semi * open sets if there is an intuitionistic open set \widetilde{G} in X such that $\widetilde{G} \subseteq \widetilde{A} \subseteq Icl^*(\widetilde{G})$.
- ii. intuitionistic semi * closed set if X Ã is intuitionistic semi * open.

Definition 2.8. The intuitionistic semi * interior of \widetilde{A} is defined as the union of all intuitionistic semi * open sets of X contained in \widetilde{A} . It is denoted by IS*int (\widetilde{A}).

Definition 2.9. The semi * closure of an IS \tilde{A} is defined as the intersection of all intuitionistic semi * closed sets in X that containing \tilde{A} . It is denoted by IS*cl(\tilde{A}).

Theorem 2.10. Let (X, τ_I) be an ITS and \widetilde{A} be any ITS. Then

- i. \widetilde{A} is intuitionistic semi * regular if and only if IS *Fr(\widetilde{A})= $\widetilde{\varphi}_{I}$.
- ii. $IS * Fr(\widetilde{A}) = IS * cl(\widetilde{A}) \cap IS * cl(X \widetilde{A}).$

Definition 2.11. The function f: $(X, \tau_1) \rightarrow (Y, \tau_2)$ is said to be intuitionistic semi * continuous (summarizing IS*-Cts) if $f^{-1}(\widetilde{U})$ is IS*O in (X, τ_1) for every IOS \widetilde{U} in (Y, τ_2) .

Definition 2.12. Two IS's \tilde{E} and \tilde{F} are said to be overlapping if $\tilde{E} \not\subseteq X - \tilde{F}$. Conversely \tilde{E} and \tilde{F} are said to be nonoverlapping, if $\tilde{E} \subseteq X - \tilde{F}$. Notice that $\tilde{E} \not\subseteq X - \tilde{F}$ if and only if $E^{(1)} \not\subseteq F^{(1)}$ or $\tilde{E}^{(1)} \not\supseteq F^{(2)}$.

3. INTUITIONISTIC SEMI * CONNECTED

Definition 3.1. An ITS (X, τ) is said to be an intuitionistic semi * connected if \widetilde{X}_{I} cannot be expressed as the union of two disjoint nonempty IS*O sets in X.

Theorem 3.2. Every intuitionistic semi * connected is intuitionistic connected.

Proof. Let X be an intuitionistic semi * connected. To prove X is an intuitionistic connected. Suppose X is not an intuitionistic connected. Then there exist a disjoint nonempty IOS \tilde{U} and \tilde{V} such that $\tilde{X_I} = \tilde{U} \cup \tilde{V}$. Since \tilde{U} and \tilde{V} are IOS, both \tilde{U} and \tilde{V} are IS*O. This is a contradiction to X is an intuitionistic semi * connected. Hence X is an intuitionistic connected.

Remark 3.3. The converse of the above theorem need not be true as shown in the succeeding example

Example 3.4. Let X = {i, j, k} and $\tau = {\widetilde{X}_{I}, \widetilde{\emptyset}_{I}, < X, \{j\}, \{i, k\} >, < X, \{i\}, \{j\} >, < X, \{i, j\}, \emptyset >}.$ Then IS*O(X, τ) = { $\widetilde{X}_{I}, \widetilde{\emptyset}_{I}, < X, \{j\}, \{i, k\} >, < X, \{i\}, \{j\} >, < X, \{i, j\}, \emptyset >, < X, \{i, k\}, \{j\} >}.$ Clearly X is an intuitionistic connected but not an intuitionistic semi * connected.

Theorem 3.5. Every intuitionistic semi connected is intuitionistic semi * connected.

Proof. Let X be an intuitionistic semi connected. To prove X is an intuitionistic semi * connected. Suppose X is not an intuitionistic semi * connected. Then there exist a disjoint nonempty IS*O sets \tilde{U} and \tilde{V} such that $\hat{X_I} = \tilde{U} \cup \tilde{V}$. Since \tilde{U} and \tilde{V} are IS*O, both \tilde{U} and \tilde{V} are ISO sets. This is a contradiction to X is an intuitionistic semi connected. Hence X is an intuitionistic semi *connected.

Remark 3.6. The converse of the above theorem need not be true as shown in the succeeding example.

Example 3.7. Let $X = \{i, j, k\}$ and $\tau = \{X_{I}, \tilde{\emptyset}_{I}, < X, \{i\}, \{j, k\} >, < X, \{k\}, \{i, j\} >, < X, \{i, k\}, \{j\} >\}$. Then IS*O(X, τ) = $\{X_{I}, \tilde{\emptyset}_{I}, < X, \{i\}, \{j, k\} >, < X, \{k\}, \{i, j\} >, < X, \{i, k\}, \{j\} >, < X, \{i\}, \{k\} >, < X, \{k\}, \{i\} >, < X, \{i, k\}, \{j\} >, < X, \{i\}, \{k\} >, < X, \{k\}, \{i\} >, < X, \{i, k\}, \emptyset >\}$. Then X is an intuitionistic semi * connected but not an intuitionistic semi connected.

Theorem 3.8. An ITS (X, τ) has the only intuitionistic semi * regular subsets are $\tilde{\emptyset}_I$ and \tilde{X}_I itself then (X, τ) is an intuitionistic semi * connected.

Proof. Assume that $\tilde{\emptyset}_I$ and \tilde{X}_I are the only intuitionistic semi * regular subsets of X. To prove X is an intuitionistic semi * connected. Suppose X is not an intuitionistic semi * connected. Then there exist a disjoint nonempty IS*O sets \tilde{A} and \tilde{B} such that $\widetilde{X}_I = \tilde{A} \cup \tilde{B}$. Therefore $\tilde{A} = X - \tilde{B}$ is IS*C. Hence \tilde{A} is an intuitionistic semi * regular which is contradiction to our assumption. Hence X is an intuitionistic semi * connected.

Theorem 3.9. An ITS is an intuitionistic semi * connected if and only if every nonempty proper subsets of X has nonempty intuitionistic semi * frontier.

Proof. Let X be an intuitionistic semi * connected and \tilde{A} be any nonempty IS of X. To prove IS*Fr(\tilde{A}) $\neq \tilde{\varphi}_I$. Suppose IS*Fr(\tilde{A}) = $\tilde{\varphi}_I$. Then by theorem 2.10, \tilde{A} is an intuitionistic semi * regular. Now by theorem 3.8, \tilde{A} is not an intuitionistic semi * connected. This is a contradiction to our hypothesis. Therefore IS*Fr(\tilde{A}) $\neq \tilde{\varphi}_I$. Conversely, assume that \tilde{A} is any nonempty IS of X such that IS*Fr(\tilde{A}) $\neq \tilde{\varphi}_I$. To prove X is an intuitionistic semi * connected. Suppose X is not an intuitionistic semi * connected. Then there exist a nonempty IS*O sets \tilde{U} and \tilde{V} such that $\tilde{X}_I = \tilde{U} \cup \tilde{V}$. Therefore $\tilde{U} = X - \tilde{V}$. Hence \tilde{U} is both IS*O and IS*C. Therefore by theorem 2.10, IS*Fr(\tilde{A}) = $\tilde{\varphi}_I$ which is a contradiction to our assumption. Thus X is an intuitionistic semi * connected.

Theorem 3.10. Let (X, τ_1) and (Y, τ_2) be the two ITS and f: $X \rightarrow Y$ be the surjection map, intuitionistic semi * continuous and X be an intuitionistic semi * connected. Then Y is an intuitionistic semi * connected.

Proof. Let f: X \rightarrow Y be the surjection, intuitionistic semi * continuous and X be an intuitionistic semi * connected. Assume that Y is not an intuitionistic semi * connected thats lead us to there exist a disjoint nonempty IS*O sets \tilde{U} and \tilde{V} such that $\tilde{Y}_I = \tilde{U} \cup \tilde{V}$. Since f is an IS*-Cts, $f^{-1}(\tilde{U})$ and $f^{-1}(\tilde{V})$ is IS*O in X. Since $\tilde{U} \neq \tilde{\varphi}_I$ and $\tilde{V} \neq \tilde{\varphi}_I$, $f^{-1}(\tilde{U}) \neq \tilde{\varphi}_I$ and $f^{-1}(\tilde{V}) \neq \tilde{\varphi}_I$. We have $\tilde{Y}_I = \tilde{U} \cup \tilde{V}$ implies $f^{-1}(\tilde{Y}_I) = f^{-1}(\tilde{U}) \cup f^{-1}(\tilde{V})$. Therefore $\tilde{X}_I = f^{-1}(\tilde{U}) \cup f^{-1}(\tilde{V})$ and $f^{-1}(\tilde{U}) \cap f^{-1}(\tilde{V}) = f^{-1}(\tilde{U} \cap \tilde{V}) = f^{-1}(\tilde{\varphi}_I) = \tilde{\varphi}_I$. Therefore (X, T₁) is not an intuitionistic semi * connected. This is a contradiction to our hypothesis. Hence (Y, T₂) is an intuitionistic semi * connected.

Theorem 3.11. Let (X, τ_1) and (Y, τ_2) be the two ITS and f: $X \rightarrow Y$ be an injection map, IPS*O and IPS*C. If Y is an intuitionistic semi * connected, then X is an intuitionistic semi * connected.

Proof. Assume (X, τ_1) is not an intuitionistic semi * connected thats lead us to there exist a nonvoid IS*O sets \tilde{U} and \tilde{V} such that $\tilde{Y}_I = \tilde{U} \cup \tilde{V}$ and $\tilde{U} \cap \tilde{V} = \tilde{\varphi}_I$. Then $\tilde{U} = X - \tilde{V}$. Therefore \tilde{U} is both IS*O and IS*C in X. We have f: X \rightarrow Y is both IPS*O and IPS*C, $f^{-1}(\tilde{U})$ is both IS*O and IS*C in Y. Therefore by theorem 2.10 IS * Fr $(f^{-1}(\tilde{U})) = \tilde{\varphi}_I$. Thus by theorem 3.9, Y is not an intuitionistic semi * connected which is contradiction. Hence (X, τ_1) is an intuitionistic semi * connected. **Theorem 3.12.** Let (X, τ_1) and (Y, τ_2) be the two ITS and f: $X \rightarrow Y$ is an IS*O and IS*C injection map and (Y, τ_2) is an intuitionistic semi * connected, then (X, τ_1) is an intuitionistic connected.

Proof. Assume (X, τ_1) is not an intuitionistic connected thats lead us to there exist a nonempty IO sets \tilde{U} and \tilde{V} such that $\tilde{Y}_I = \tilde{U} \cup \tilde{V}$ and $\tilde{U} \cap \tilde{V} = \tilde{\varphi}_I$. Then $\tilde{U} = X - \tilde{V}$. Therefore \tilde{U} is both IOS and ICS in X. Then \tilde{U} is both IS*O and IS*C. Since f is both IS*O and IS*C, $f(\tilde{U})$ is an intuitionistic semi * regular in Y. Therefore by theorem 2.10, IS *Fr(f((\tilde{U})) = $\tilde{\varphi}_I$. Thus by theorem 3.9, Y is not an intuitionistic semi * connected which is contradiction. Thus (X, τ_1) is an intuitionistic connected.

Definition 3.13. Let (X, τ) be an ITS and \tilde{U} be any IS of X. If there exist IS*O sets \tilde{A} and \tilde{B} in X satisfying the following properties, then \tilde{U} is called intuitionistic semi * C_i-disconnected.

- (i) $C_1: \widetilde{U} \subseteq \widetilde{A} \cup \widetilde{B}, \widetilde{A} \cap \widetilde{B} \subseteq X \widetilde{U}, \widetilde{U} \cap \widetilde{A} \neq \widetilde{\varphi}_I, \widetilde{U} \cap \widetilde{B} \neq \widetilde{\varphi}_I.$
- (ii) C₂: $\widetilde{U} \subseteq \widetilde{A} \cup \widetilde{B}$, $\widetilde{U} \cap \widetilde{A} \cap \widetilde{B} = \widetilde{\emptyset}$, $\widetilde{U} \cap \widetilde{A} \neq \widetilde{\emptyset}_I$, $\widetilde{U} \cap \widetilde{B} \neq \widetilde{\emptyset}_I$.
- (iii) C₃: $\tilde{U} \subseteq \tilde{A} \cup \tilde{B}, \tilde{A} \cap \tilde{B} \subseteq X \tilde{U}, \tilde{A} \not\subseteq X \tilde{U}, \tilde{B} \not\subseteq X \tilde{U}$.
- (iv) C₄: $\widetilde{U} \subseteq \widetilde{A} \cup \widetilde{B}$, $\widetilde{U} \cap \widetilde{A} \cap \widetilde{B} = \widetilde{\emptyset}$, $\widetilde{A} \subseteq X \widetilde{U}$, $\widetilde{B} \subseteq X \widetilde{U}$.

Definition 3.14. Let (X, τ) be an ITS and \tilde{U} be any IS of X. If \tilde{U} is said to be an intuitionistic semi * C_i- connected, then \tilde{U} is not an intuitionistic semi * C_i- disconnected where i = 1,2,3,4.

Theorem 3.15. Let (X, τ) be an ITS and \tilde{U} , \tilde{V} be any two IS of X. If \tilde{U} , \tilde{V} are intuitionistic semi * C₁- connected and $\tilde{U} \cap \tilde{V} \neq \tilde{\emptyset}_I$, then $\tilde{U} \cup \tilde{V}$ is also an intuitionistic semi * C₁- connected.

Proof. Let \tilde{U} , \tilde{V} be intuitionistic semi * C₁- connected. Suppose $\tilde{U} \cup \tilde{V}$ is not an intuitionistic semi * C₁- connected. Then there exist an IS*O set \tilde{C} and \tilde{D} such that $\tilde{U} \cup$ $\tilde{V} \subseteq \tilde{C} \cup \tilde{D}$, $\tilde{C} \cup \tilde{D} \subseteq X - (\tilde{U} \cup \tilde{V})$, $(\tilde{U} \cup \tilde{V}) \cap \tilde{C} \neq \tilde{\emptyset}_I$ and $(\tilde{U} \cup \tilde{V}) \cap \tilde{D} \neq \tilde{\emptyset}_I$. Since \tilde{U} and \tilde{V} are intuitionistic semi * C₁- connected, $\tilde{U} \cap \tilde{C} = \tilde{\varphi}_I$ or $\tilde{U} \cap \tilde{D} = \tilde{\varphi}_I$ and $\tilde{V} \cap \tilde{C} = \tilde{\varphi}_I$ or $\tilde{V} \cap$ $\widetilde{V} \neq \widetilde{Q}_I, \quad \widetilde{p}_{IV} \in \widetilde{U}$ \widetilde{Q}_I . Since \widetilde{U} \cap Đ = \cap Ñ. **Case (i)** Let $\tilde{U} \cap \tilde{C} = \tilde{\varphi}_I$ and $\tilde{V} \cap \tilde{C} = \tilde{\varphi}_I$. Then $(\tilde{U} \cap \tilde{C}) \cup (\tilde{V} \cap \tilde{C}) = \tilde{\varphi}_I \Rightarrow (\tilde{U} \cup \tilde{V}) \cap \tilde{C} = \tilde{\varphi}_I$. which is a contradiction. **Case (ii)** Let $\widetilde{U} \cap \widetilde{D} = \widetilde{\varphi}_I$ and $\widetilde{V} \cap \widetilde{D} = \widetilde{\varphi}_I$. Then $(\widetilde{U} \cap \widetilde{D}) \cup (\widetilde{V} \cap \widetilde{D})$ \widetilde{D}) = $\widetilde{\varphi}_I \Rightarrow (\widetilde{U} \cup \widetilde{V}) \cap \widetilde{D} = \widetilde{\varphi}_I$ which is a contradiction. **Case (iii)** Let $\widetilde{U} \cap \widetilde{C} = \widetilde{\varphi}_I$ and $\widetilde{V} \cap$ $\widetilde{D} = \widetilde{\varphi}_I$. Then $\widetilde{p}_{IV} \notin \widetilde{C}$ and $\widetilde{p}_{IV} \notin \widetilde{D}$. This is impossible because $\widetilde{p}_{IV} \in \widetilde{U} \cap \widetilde{V} \subseteq \widetilde{C} \cup \widetilde{D}$. **Case** (iv) Let $\tilde{U} \cap \tilde{D} = \tilde{\varphi}_I$ and $\tilde{V} \cap \tilde{C} = \tilde{\varphi}_I$. This case is similar to case (iii). Hence from the above four cases $\tilde{U} \cup \tilde{V}$ is an intuitionistic semi * C₁- connected.

Theorem 3.16. Let (X, τ) be an ITS and \tilde{U} , \tilde{V} be any two IS of X. If \tilde{U} , \tilde{V} are intuitionistic semi * C₂- connected and $\tilde{U} \cap \tilde{V} \neq \tilde{\varphi}_I$, then $\tilde{U} \cup \tilde{V}$ is also an intuitionistic semi * C₂- connected.

Proof. Let \tilde{U} , \tilde{V} be intuitionistic semi * C₂- connected. Suppose $\tilde{U} \cup \tilde{V}$ is not an intuitionistic semi * C₂- connected. Then there exist an IS*O set \tilde{C} and \tilde{D} such that $\tilde{U} \cup \tilde{V}$ $\subseteq \tilde{C} \cup \tilde{D} , (\tilde{U} \cup \tilde{V}) \cap \tilde{C} \cap \tilde{D} = \tilde{\varphi}_I , (\tilde{U} \cup \tilde{V}) \cap \tilde{C} \neq \tilde{\varphi}_I \text{ and } (\tilde{U} \cup \tilde{V}) \cap \tilde{D} \neq \tilde{\varphi}_I. \text{ Since } \tilde{U} \text{ and } \tilde{V}$ are intuitionistic semi * C₂- connected, $\tilde{U} \cap \tilde{C} = \tilde{\varphi}_I$ or $\tilde{U} \cap \tilde{D} = \tilde{\varphi}_I$ and $\tilde{V} \cap \tilde{C} = \tilde{\varphi}_I$ or $\tilde{V} \cap \tilde{D}$ õ, Since Ũ \cap $\tilde{V} \neq$ *φ*₁, Ñ. = $\tilde{p}_{\rm IV}$ E ĨĨ \cap **Case (i)** Let $\tilde{U} \cap \tilde{C} = \tilde{\varphi}_I$ and $\tilde{V} \cap \tilde{C} = \tilde{\varphi}_I$. Then $(\tilde{U} \cap \tilde{C}) \cup (\tilde{V} \cap \tilde{C}) = \tilde{\varphi}_I \Rightarrow (\tilde{U} \cup \tilde{V}) \cap \tilde{C} = \tilde{\varphi}_I$ which is a contradiction. **Case (ii)** Let $\tilde{U} \cap \tilde{D} = \tilde{\varphi}_I$ and $\tilde{V} \cap \tilde{D} = \tilde{\varphi}_I$. Then $(\tilde{U} \cap \tilde{D}) \cup (\tilde{V})$ $(\widetilde{D}) = \widetilde{\varphi}_I \Rightarrow (\widetilde{U} \cup \widetilde{V}) \cap \widetilde{D} = \widetilde{\varphi}_I$ which is a contradiction. **Case (iii)** Let $\widetilde{U} \cap \widetilde{C} = \widetilde{\varphi}_I$ and $\tilde{V} \cap \tilde{D} = \tilde{\varphi}_I$. Then $\tilde{p}_{V} \notin \tilde{C}$ and $\tilde{p}_{V} \notin \tilde{D}$. This is impossible because $\tilde{p}_{V} \in \tilde{U} \cap \tilde{V} \subseteq \tilde{C} \cup \tilde{D}$. **Case (iv)** Let $\tilde{U} \cap \tilde{D} = \tilde{\varphi}_I$ and $\tilde{V} \cap \tilde{C} = \tilde{\varphi}_I$. This case is similar to case (iii). Hence from the above four cases $\tilde{U} \cup \tilde{V}$ is an intuitionistic semi * C₂- connected.

Theorem 3.17. Let (X, τ) be an ITS and \tilde{U} , \tilde{V} be any two IS of X. If \tilde{U} and \tilde{V} are overlapping intuitionistic semi * C₃- connected, then $\tilde{U} \cup \tilde{V}$ is also an intuitionistic semi * C₃- connected.

Proof. Assume $\tilde{U} \cup \tilde{V}$ is not an intuitionistic semi * C₃- connected thats lead us to there exist and IS*O sets \tilde{E} and \tilde{F} such that $\tilde{U} \cup \tilde{V} \subseteq \tilde{E} \cup \tilde{F}$, $\tilde{E} \cap \tilde{F} \subseteq X - (\tilde{U} \cup \tilde{V}), \tilde{E} \not\subseteq X - (\tilde{U} \cup \tilde{V})$ \tilde{V}), $\tilde{F} \not\subseteq X - (\tilde{U} \cup \tilde{V})$. Since \tilde{U} and \tilde{V} are intuitionistic semi * C₃- connected, $\tilde{E} \subseteq X - \tilde{U}$ or $\tilde{F} \subseteq X - \tilde{U}$ and $\tilde{E} \subseteq X - \tilde{V}$ or $\tilde{F} \subseteq X - \tilde{V}$. Also by hypothesis \tilde{U} and \tilde{V} are overlapping, there is a point p, $(\tilde{p}_1 \in \tilde{U}, \tilde{p}_{1\vee} \in \tilde{V})$ or there is a point q, $(\tilde{q}_1 \in \tilde{V}, \tilde{q}_{1\vee} \in \tilde{U})$. **Case (i)** Let $\tilde{E} \subseteq X - \tilde{U}$ and $\tilde{E} \subseteq X - \tilde{V}$. Then $\tilde{E} \subseteq (X - \tilde{U}) \cap (X - \tilde{V}) = X - (\tilde{U} \cup \tilde{V})$ which is contradiction to $\tilde{E} \not\subseteq X - (\tilde{U} \cup \tilde{V})$. **Case (ii)** Let $\tilde{F} \subseteq X - \tilde{U}$ and $\tilde{F} \subseteq X - \tilde{V}$. This is similar to case (i). **Case (iii)** Let $\tilde{E} \subseteq$ $X - \tilde{U}$ and $\tilde{F} \subseteq X - \tilde{V}$. Suppose there is a point p, $(\tilde{p}_1 \in \tilde{U}, \tilde{p}_{1\vee} \in \tilde{V})$. Since $\tilde{E} \subseteq X - \tilde{U}$ and $\tilde{F} \subseteq X - \tilde{V}, \ \tilde{U} \cup \tilde{V} \subseteq \tilde{E} \cup \tilde{F} \subseteq (X - \tilde{U}) \cup (X - \tilde{V}) = X - (\tilde{U} \cap \tilde{V}).$ Therefore $\tilde{U} \cap \tilde{V} \subseteq X - (\tilde{U} \cup \tilde{V})$ \tilde{V}) = (X - \tilde{U}) \cup (X - \tilde{V}). We have $\tilde{p}_i \in \tilde{U}$ and $\tilde{p}_{iV} \in \tilde{V} \Rightarrow \tilde{p}_{iV} \in \tilde{U} \Rightarrow \tilde{p}_{iV} \in \tilde{U} \cap \tilde{V} \subseteq (X - \tilde{U}) \cap$ $(X - \tilde{V}) \Rightarrow \tilde{p}_{V} \in X - \tilde{U}$ and $\tilde{p}_{V} \in X - \tilde{V}$ which is a contradiction. Similarly if there is a point Ñ we (ã E ĩv E \widetilde{U}), get а contradiction. q, **Case** (iv) Let $\tilde{E} \subseteq X - \tilde{V}$ and $\tilde{F} \subseteq X - \tilde{U}$. This is similar to case (iii). Therefore from the above four cases $\tilde{U} \cup \tilde{V}$ is an intuitionistic semi * C₃- connected.

Theorem 3.18. Let (X, τ) be an ITS and \tilde{U} , \tilde{V} be any two IS of X. If \tilde{U} and \tilde{V} are overlapping intuitionistic semi * C₄- connected, then $\tilde{U} \cup \tilde{V}$ is also an intuitionistic semi * C₄- connected.

Proof. The proof is similar to previous theorem.

4. INTUITIONISTIC SEMI * COMPACT SPACES

Definition 4.1. Let $\tilde{\mathbb{D}}$ be a family of IS*O sets of X, and let (X, τ) be an ITS. Then the collection $\tilde{\mathbb{D}}$ is called an intuitionistic semi * open cover (summarizing IS*-OC) of X if $\bigcup \tilde{\mathbb{D}} = \tilde{X}_I$.

Definition 4.2. An ITS (X, τ) is said to be an intuitionistic semi * compact (summarizing IS*-cpt) if every IS*-OC of X has a finite sub cover.

Theorem 4.3. Let (X, T) be an ITS. Then the following results hold.

- (i) Every IS*-cpt implies intuitionistic compact.
- (ii) Every intuitionistic semi compact implies IS*-cpt.

Proof. (i) Let (X, τ) be an IS*-cpt and $\{\widetilde{U}_{\alpha}\}$ be an intuitionistic open cover for X. Then $\{\widetilde{U}_{\alpha}\}$ is an IS*-OC for X. Since X is an IS*-cpt, $\{\widetilde{U}_{\alpha}\}$ has a finite subcover. Hence X is an intuitionistic compact. (ii) Let (X, τ) be an intuitionistic semi compact and $\{\widetilde{D}_{\alpha}\}$ be an IS*-OC for X. Then $\{\widetilde{D}_{\alpha}\}$ is an intuitionistic semi open cover for X. Since X is an intuitionistic semi compact, $\{\widetilde{D}_{\alpha}\}$ has a finite subcover. Hence (X, τ) is an IS*-cpt.

Theorem 4.4. Let (X, τ) be an ITS. Then (X, τ) is IS*-cpt if and only if every family of IS*C sets in X with void intersection has a finite subfamily with void intersection.

Proof. Let (X, T) be an IS*-cpt and $\{\widetilde{U}_{\alpha}\}_{\alpha\in J}$ be a family of IS*C sets in X such that $\cap\{\widetilde{U}_{\alpha}\}_{\alpha\in J} = \widetilde{\emptyset}_{I}$. Then $\cup \{X - \widetilde{U}_{\alpha}\}_{\alpha\in J} = \widetilde{X}_{I}$ is an IS*-OC for X. Since X is an IS*-cpt, X has a finite subcover, namely $\{X - \widetilde{U}_{\alpha 1}, X - \widetilde{U}_{\alpha 2}, ..., X - \widetilde{U}_{\alpha n}\}$ for X. Therefore $\widetilde{X} = \bigcup_{i=1 \text{ to } n} \{X - \widetilde{U}_{\alpha i}\}$. Thus $\cap_{i=1 \text{ to } n} \{\widetilde{U}_{\alpha i}\} = \widetilde{\emptyset}_{I}$. Conversely, assume that every family of IS*C sets in (X, T) with empty intersection has a finite subfamily with void intersection. Let $\{\widetilde{D}_{\alpha}\}_{\alpha\in J}$ be an IS*-OC for (X, T). Then $\cup \{\widetilde{D}_{\alpha}\}_{\alpha\in J} = \widetilde{X}_{I}$. Therefore $\{X - \widetilde{D}_{\alpha}\}_{\alpha\in J} = \widetilde{\emptyset}_{I}$. Since $X - \widetilde{D}_{\alpha}$ is IS*C set for each $\alpha \in J$, by hypothesis there is a finite subfamily has a empty intersection. That is $\cap_{i=1 \text{ to } n} (X - \widetilde{D}_{\alpha}) = \widetilde{\emptyset}_{I}$. Then $\cup_{i=1 \text{ to } n} \widetilde{D}_{\alpha} = \widetilde{X}_{I}$. Hence (X, T) is an IS*-cpt.

Theorem 4.5. Let (X, τ_1) and (Y, τ_2) be any two ITS and $f : (X, \tau_1) \rightarrow (Y, \tau_2)$ be an IS*O function. If (Y, τ_2) is an IS*-cpt, then (X, τ_1) is an IS*-cpt.

Proof. Let $\{\tilde{F}_{\alpha}\}$ be an IS*-OC for (X, τ_1). Then $\{f(\tilde{F}_{\alpha})\}$ is an IS*-OC for (Y, τ_2). Since (Y, τ_2) is an IS*-cpt, $\{f(\tilde{F}_{\alpha})\}$ has an finite subcover, namely $\{f(\tilde{F}_{\alpha}), f(\tilde{F}_{\alpha}), ..., f(\tilde{F}_{\alpha})\}$. Therefore $\{\tilde{F}_{\alpha}, \tilde{F}_{\alpha}, ..., \tilde{F}_{\alpha}\}$ is a finite subcover for (X, τ_1). Hence (X, τ_1) is an IS*-cpt.

Theorem 4.6. Let (X, τ_1) and (Y, τ_2) be any two ITS and $f : (X, \tau_1) \rightarrow (Y, \tau_2)$ be an IS*O function. If (Y, τ_2) is an IS*-cpt, then (X, τ_1) is an intuitionistic compact.

Proof. Let $\{\tilde{E}_{\alpha}\}$ be an intuitionistic open cover for (X, τ_1) . Since f is an IS*O and $\{\tilde{E}_{\alpha}\}$ is an intuitionistic open cover for (Y, τ_2) , {f (\tilde{E}_{α}) } is an IS*-OC for (Y, τ_2) . Since (Y, τ_2) is an IS*-compact, {f (\tilde{E}_{α}) } has an finite subcover, namely {f (\tilde{E}_{α}) , f (\tilde{E}_{α}) , ..., f (\tilde{E}_{α}) }. Therefore { \tilde{E}_{α} , \tilde{E}_{α} , ..., \tilde{E}_{α} } is a finite subcover for (X, τ_1) . Hence (X, τ_1) is an intuitionistic compact.

Theorem 4.7. Let (X, τ_1) and (Y, τ_2) be any two ITS and $f : (X, \tau_1) \rightarrow (Y, \tau_2)$ be a surjection and IS*-Cts function. If (X, τ_1) is an IS*-cpt, then (Y, τ_2) is an intuitionistic compact.

Proof. Let $\{\tilde{F}_{\alpha}\}\$ be an intuitionistic open cover for (Y, τ_2). Since f is an IS*-Cts, $\{f^{-1}(\tilde{F}_{\alpha})\}\$ is an IS*-OC for (X, τ_1). Since (X, τ_1) is an IS*-cpt, $\{f^{-1}(\tilde{F}_{\alpha})\}\$ has finite subcover, namely

{ $f^{-1}(\tilde{F}_{\alpha 1}), f^{-1}(\tilde{F}_{\alpha 2}), ..., f^{-1}(\tilde{F}_{\alpha n})$ }. Therefore { $\tilde{F}_{\alpha 1}, \tilde{F}_{\alpha 2}, ..., \tilde{F}_{\alpha n}$ } is a finite subcover for (Y, T₂). Hence (Y, T₂) is an intuitionistic compact.

Definition 4.8. An ITS (X, τ) is said to be an intuitionistic semi * Lindelof (summarizing IS*-L) if every IS*-OC contains countable subcover.

Theorem 4.9. Let $f : (X, \tau_1) \rightarrow (Y, \tau_2)$ be an surjection, IS*-Cts and (X, τ_1) be an IS*-L. Then (Y, τ_2) is an intuitionistic lindelof.

Proof. Let (X, τ_1) be an IS*-L and $\{\tilde{F}_{\alpha}\}$ be an intuitionistic open cover for (Y, τ_2) . Then $\{f^{-1}(\tilde{F}_{\alpha})\}$ is an IS*-OC for (X, τ_1) . Since (X, τ_1) is IS*-L, $\{f^{-1}(\tilde{F}_{\alpha})\}$ contains a countable subcover say, $\{f^{-1}(\tilde{F}_{\alpha n})\}$. Then $\{\tilde{F}_{\alpha n}\}$ has a countable subcover for (Y, τ_2) . Thus (Y, τ_2) is an intuitionistic lindelof.

Theorem 4.10. Let $f : (X, \tau_1) \rightarrow (Y, \tau_2)$ be an surjection, IS*-Irresolute and (X, τ_1) be an IS*-L. Then (Y, τ_2) is an IS*-L.

Proof. Let (X, τ_1) be an IS*-L and { \tilde{F}_{α} } be an IS*-OC for (Y, τ_2). Then { f^{-1} (\tilde{F}_{α})} is an IS*-OC for (X, τ_1). Since (X, τ_1) is IS*-L, { f^{-1} (\tilde{F}_{α})} contains a countable subcover say, { f^{-1} ($\tilde{F}_{\alpha n}$)}. Then { $\tilde{F}_{\alpha n}$ } is a countable subcover for (Y, τ_2). Thus (Y, τ_2) is an IS*-L.

Theorem 4.11. Let $f : (X, \tau_1) \rightarrow (Y, \tau_2)$ be an intuitionistic pre semi * open and (Y, τ_2) be an IS*-L. Then (X, τ_1) is an IS*-L.

Proof. Let (Y, τ_2) be an IS *-L and $\{\widetilde{D}_{\alpha}\}$ be an IS*-OC for (X, τ_1) . Then $\{f(\widetilde{D}_{\alpha})\}$ is an IS*-OC for Y. Since (Y, τ_2) is IS*-L, $\{f(\widetilde{D}_{\alpha})\}$ contains a countable subcover say, $\{f(\widetilde{D}_{\alpha n})\}$. Then $\{\widetilde{D}_{\alpha n}\}$ is a countable subcover for (X, τ_1) . Thus (X, τ_1) is an IS*-L.

Theorem 4.12. Let $f : (X, \tau_1) \rightarrow (Y, \tau_2)$ be an IS*O function and (Y, τ_2) be an IS*-L. Then (X, τ_1) is an intuitionistic lindelof.

Proof. Let (Y, τ_2) be an IS *-L and $\{\widetilde{D}_{\alpha}\}$ be an intuitionistic open cover for (X, τ_1) . Then $\{f(\widetilde{D}_{\alpha})\}$ is an IS*-OC for (Y, τ_2) . Since (Y, τ_2) is IS*-L, $\{f(\widetilde{D}_{\alpha})\}$ contains a countable subcover say, $\{f(\widetilde{D}_{\alpha n})\}$. Then $\{f(\widetilde{D}_{\alpha n})\}$ is a countable subcover for (X, τ_1) . Thus (X, τ_1) is an intuitionistic lindelof.

5. CONCLUSION

The different qualities of intuitionistic semi * connectedness and compactness are covered in this article. We will continue to investigate different concepts, such as maximal and minimal open sets, separation axioms in IS*O sets.

6. ACKNOWLEDGEMENT

My heartful thanks to my guide Dr. M. Navaneethakrishnan for his valuable guidance on writing this paper and thanks to the referees for their time and comments.

References

- 1. D. Coker, An introduction to intuitionistic topological space preliminary report, Akdeniz University, Turkey, 199
- 2. D. Coker, a Note on intuitionistic sets and intuitionistic points, Turk. J. Math, 20(3), 1996, 343 351.
- 3. D. Coker, An introduction to intuitionistic topological spaces, Busefal, 81, 2000, 51 56.
- 4. D.Coker, Selma Ozcag on Connectedness in intuitionistic fuzzy special topological spaces, International Journal of Math. And Math.Science, 21(1), (1998), 33-40.
- 5. GirijaS. Selvanayki S., Ilango Gnanambal. "Semi connected spaces in intuitionistic topological spaces", Malaya Journal of Matematik, 2020
- 6. K.T.Atanassov, VII ITKKR's Session, June 1983 (Soa) (V. Sgurev, ed.), Central Sci. and Techn. Library, Bulg. Academy of Scienes, 1984.
- 7. Rathinakani, G. Esther, and M. Navaneethakrishnan, "A NEW CLOSURE OPERATOR IN INTUITIONISTIC TOPOLOGICAL SPACES."
- 8. Rathinakani, G. Esther, and M. Navaneethakrishnan, "A Study on Intuitionistic Semi * Open Set." Design Engineering (2021): 5043-5049.
- 9. Rathinakani, G. Esther, and M. Navaneethakrishnan, "On Intuitionistic Semi * Continuous Functions." Ratio Mathematica 44 (2022): 65.
- 10. Rathinakani, G. Esther, and M. Navaneethakrishnan, "Some New Operators on Intuitionistic Semi * Open Set." Proceedings of ICCSMM-2022, Tiruchendur, Tamilnadu, India.
- 11. Sema Ozcag and Dogan Coker, a Note on Connectedness in Intuitionistic Fuzzy Special Topological Spaces, Internat. J. Math. And Math. Sci. Vol.23, No.1 (2000) 45-54.
- 12. Younis J. Yaseen and Asmaa G. Raouf (2009) "On generalization closed set and generalized continuity in intuitionistic topological sapce" University of Tirkit- College of Computer Science and Mathematics.