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Abstract 

In this article certain kinds of intuitionistic semi * connectedness and intuitionistic semi * compactness are 
defined in intuitionistic topological space and their characteristics are investigated. Here we introduce 
intuitionistic semi * connectedness, intuitionistic semi * Ci− connectedness (i = 1,2,3,4,5), intuitionistic semi 
* compactness and obtain many properties. 

Index Terms: intuitionistic semi * connectedness, intuitionistic semi * Ci− connectedness, intuitionistic semi 
* compactness intuitionistic semi * open, intuitionistic semi * closed, IS*O, IS*C. 

 
1. INTRODUCTION 

Atanassov [6] is the person who first presented the idea of intuitionistic set. After that this 
concept is generalized to intuitionistic sets in [1], [2] and intuitionistic topological spaces 
in [3]. An idea of intuitionistic connectedness and intuitionistic compactness in intuitionistic 
topological space is given in [5]. In this article we establish the concepts of intuitionistic 
semi * connectedness, intuitionistic semi * Ci− connectedness, intuitionistic semi * 
compactness, intuitionistic semi * lindelof spaces. Also we encounter their basic 
properties and explore their relationship with already existing concepts. 
 
2. PRIME NEEDS 

Definition 2.1. Let X be a nonempty fixed set. An intuitionistic set (IS in short) Ã is an 

object having the form Ã = < 𝑋, (1), (2) > where (1) and (2) are subsets of 𝑋 such that 𝐴(1) ∩ 

𝐴(2) = ∅. The set (1) is called the set of member of  Ã, while 𝐴(2) is called the set of non-
member of Ã. 

Definition 2.2. Let X be a non empty set, Ã = < 𝑋, (1), (2) > and B̃ = < 𝑋, (1), (2) > be an IS 

sets and let { Ã 𝑖 : 𝑖 ∈ 𝑗} be arbitrary family of IS, where Ã 𝑖 = < 𝑋, Ai
(1)

, Ai
(2)

 >.  
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Then the following results are hold. 

i. Ã ⊆ B̃ if and only if (1) ⊆ (1) and (2) ⊆ (2). 
ii. Ã = B̃ if and only if Ã ⊆ B̃ and B̃ ⊆ Ã . 

iii. Ã= < 𝑋, (2), (1) > is called the complement of Ã . It is aslo denoted by 𝑋 – Ã. 

iv. ∪ Ã 𝑖 = < 𝑋, ∪ Ai
(1)

 ,∩ Ai
(2)

 >. 

v. ∩ Ã 𝑖 = < 𝑋, ∩ Ai
(1)

 ,∪ Ai
(2)

 >. 

vi. Ã − B̃  = Ã ∩ B̃. 

vii. ∅̃I= < 𝑋, ∅, 𝑋 > and XĨ = < 𝑋, 𝑋, ∅ >. 

Definition 2.3. An intuitionistic topology (IT in short) by subsets of a nonempty set X is a 

family 𝜏 of IS’s satisfying the following axioms. 

(a) ∅̃I , XĨ ∈ 𝜏 

(b)  G̃1 ∩ G̃2 ∈ 𝜏 for every G̃1 , G̃2 ∈ 𝜏  

(c)  ∪ G̃ 𝑖 ∈ 𝜏 for any arbitrary family { G̃ 𝑖 : 𝑖 ∈ 𝐽} ⊆ 𝜏.  

The pair (𝑋, 𝜏) is called an intuitionistic topological space (ITS in short) and any IS Ã in 𝜏 

is called an intuitionistic open set (IOS). The complement of an IOS Ã in 𝜏 is called an 
intuitionistic closed set (ICS) 

Definition 2.4. Let X be a nonempty set and p ∈ X be a fixed element. Then the IS p̃I 

(resp. pIV) defined by p̃I =< X, {p}, {p}c >  (resp. p̃IV =< X, ∅, {p}c > is called an intuitionistic 
point (resp. intuitionistic vanishing point). 

Definition 2.5. Let (𝑋, 𝜏) be an ITS and Ã =< 𝑋, 𝐴1, 𝐴2 > be an IS in X, Ã is said to be 
intuitionistic generalized closed set (briefly Ig – closed set) Icl(Ã ) ⊆ Ũ whenever  Ã ⊆ Ũ 
and Ũ is IO in X. 

Definition 2.6. If Ã is an IS of an ITS (X, τ), then the intuitionistic generalized closure of 

Ã is is denoted by Icl*(Ã) and is defined as Icl*(Ã) = {Ẽ : Ẽ is Ig – closed set and Ã ⊆ Ẽ }. 

Definition 2.7. 

i. Intuitionistic semi * open sets if there is an intuitionistic open set G̃ in X such that 

G̃  ⊆  Ã  ⊆ Icl*(G̃). 

ii. intuitionistic semi * closed set if X - Ã is intuitionistic semi * open. 

Definition 2.8. The intuitionistic semi * interior of Ã is defined as the union of all 

intuitionistic semi * open sets of X contained in Ã. It is denoted by IS*int (Ã). 

Definition 2.9. The semi * closure of an IS Ã is defined as the intersection of all 

intuitionistic semi * closed sets in X that containing Ã. It is denoted by IS*cl(Ã). 
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Theorem 2.10. Let (X, τ I) be an ITS and Ã be any ITS. Then 

i. Ã is intuitionistic semi * regular if and only if IS ∗Fr(Ã)= ∅̃I.  

ii. IS ∗Fr(Ã) = IS ∗cl(Ã) ∩ IS ∗cl(X − Ã). 

Definition 2.11. The function f: (X, τ 1) → (Y, τ 2) is said to be intuitionistic semi * 

continuous (summarizing IS*-Cts) if f −1(Ũ) is IS*O in (X, τ 1)for every IOS Ũ in (Y, τ 2). 

Definition 2.12. Two IS's Ẽ and F̃ are said to be overlapping if Ẽ ⊈ X− F̃. Conversely Ẽ 

and F̃ are said to be nonoverlapping, if Ẽ ⊆ X − F̃. Notice that Ẽ ⊈ X − F̃ if and only if  E(1)  

⊈  F(1)  or ˜ E(1) ⊉  F(2) . 
 
3. INTUITIONISTIC SEMI * CONNECTED 

Definition 3.1. An ITS (X, τ ) is said to be an intuitionistic semi * connected if XĨ cannot 
be expressed as the union of two disjoint nonempty IS*O sets in X. 

Theorem 3.2. Every intuitionistic semi * connected is intuitionistic connected. 

Proof. Let X be an intuitionistic semi * connected. To prove X is an intuitionistic 
connected. Suppose X is not an intuitionistic connected. Then there exist a disjoint 

nonempty IOS Ũ and Ṽ such that  XĨ =  Ũ  ∪  Ṽ . Since Ũ and Ṽ are IOS, both Ũ and Ṽ are 
IS*O. This is a contradiction to X is an intuitionistic semi * connected. Hence X is an 
intuitionistic connected.  

Remark 3.3. The converse of the above theorem need not be true as shown in the 
succeeding example 

Example 3.4. Let X = {i, j, k} and τ  = {XĨ, ∅̃I, < X, {j}, {i, k} >, < X, {i}, {j} >, < X, {i, j}, ∅ >}.  

Then IS*O(X, τ )   = {XĨ, ∅̃I, < X, {j}, {i, k} >, < X, {i}, {j} >, < X, {i, j}, ∅ >, < X, {i, k}, {j} >}. 
Clearly X is an intuitionistic connected but not an intuitionistic semi * connected. 

Theorem 3.5. Every intuitionistic semi connected is intuitionistic semi * connected. 

Proof. Let X be an intuitionistic semi connected. To prove X is an intuitionistic semi * 
connected. Suppose X is not an intuitionistic semi * connected. Then there exist a disjoint 

nonempty IS*O sets Ũ and Ṽ such that XĨ =  Ũ  ∪  Ṽ. Since Ũ and Ṽ are IS*O, both Ũ and 

Ṽ are ISO sets. This is a contradiction to X is an intuitionistic semi connected. Hence X is 
an intuitionistic semi *connected. 

Remark 3.6. The converse of the above theorem need not be true as shown in the 
succeeding example. 

Example 3.7. Let X = {i, j, k} and τ  = {XĨ, ∅̃I, < X, {i}, {j, k} >, < X, {k}, {i, j} >, < X, {i, k}, {j} 

>}. Then IS*O(X, τ )   =  {XĨ, ∅̃I, < X, {i}, {j, k} >, < X, {k}, {i, j} >, < X, {i, k}, {j} >, < X, {i}, {k} 
>, < X, {k}, {i} >, < X, {i. k},  ∅>}. Then X is an intuitionistic semi * connected but not an 
intuitionistic semi connected. 
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Theorem 3.8.  An ITS (X, τ) has the only intuitionistic semi * regular subsets are ∅̃I and 

XĨ itself then (X, τ ) is an intuitionistic semi * connected. 

Proof. Assume that ∅̃I and X̃I are the only intuitionistic semi * regular subsets of X. To 
prove X is an intuitionistic semi * connected. Suppose X is not an intuitionistic semi * 

connected. Then there exist a disjoint nonempty IS*O sets Ã and B̃ such that XĨ =  Ã  ∪  B̃. 

Therefore Ã = X −  B̃ is IS*C. Hence Ã is an intuitionistic semi * regular which is 
contradiction to our assumption. Hence X is an intuitionistic semi * connected.  

Theorem 3.9.  An ITS  is an intuitionistic semi * connected if and only if every nonempty 
proper subsets of X has nonempty intuitionistic semi * frontier. 

Proof. Let X be an intuitionistic semi * connected and �̃� be any nonempty IS of X. To 

prove IS*Fr(�̃�) ≠ ∅̃𝐼. Suppose IS*Fr(�̃�) = ∅̃𝐼. Then by theorem 2.10, �̃� is an intuitionistic 

semi * regular. Now by theorem 3.8, �̃� is not an intuitionistic semi * connected. This is a 

contradiction to our hypothesis. Therefore IS*Fr(�̃�) ≠ ∅̃𝐼. Conversely, assume that �̃� is 

any nonempty IS of  X such that IS*Fr(�̃�) ≠ ∅̃𝐼. To prove X is an intuitionistic semi * 
connected. Suppose X is not an intuitionistic semi * connected. Then there exist a 

nonempty IS*O sets �̃� and �̃� such that 𝑋�̃� =  �̃�  ∪  �̃�. Therefore  �̃� = 𝑋 −  �̃� . Hence �̃� is 

both IS*O and IS*C. Therefore by theorem 2.10, IS*Fr(�̃�) = ∅̃𝐼 which is a contradiction to 
our assumption. Thus X is an intuitionistic semi * connected.  

Theorem 3.10. Let (X, τ1) and (Y, τ2) be the two ITS and f: X → Y be the surjection map, 
intuitionistic semi * continuous and X be an intuitionistic semi * connected. Then Y is an 
intuitionistic semi * connected. 

Proof. Let f: X → Y be the surjection, intuitionistic semi * continuous and X be an 
intuitionistic semi * connected. Assume that Y is not an intuitionistic semi * connected 

thats lead us to there exist a disjoint nonempty IS*O sets �̃� and �̃� such that 𝑌�̃� =  �̃�  ∪  �̃�. 

Since f is an IS*-Cts, 𝑓−1(�̃�) and 𝑓−1(�̃�) is IS*O in X. Since �̃�  ≠ ∅̃𝐼   and �̃�  ≠ ∅̃𝐼, 𝑓
−1(�̃�) 

≠ ∅̃𝐼 and 𝑓−1(�̃�) ≠ ∅̃𝐼. We have 𝑌�̃� =  �̃�  ∪  �̃� implies 𝑓−1(𝑌�̃�) =  𝑓−1(�̃�)  ∪  𝑓−1(�̃�). 

Therefore  𝑋�̃� = 𝑓−1(�̃�)  ∪  𝑓−1(�̃�) and 𝑓−1(�̃�) ∩ 𝑓−1(�̃�) =   𝑓−1(�̃�  ∩  �̃�) =   𝑓−1(∅̃𝐼) =

 ∅̃𝐼. Therefore (X, τ1) is not an intuitionistic semi * connected. This is a contradiction to our 
hypothesis. Hence (Y, τ2) is an intuitionistic semi * connected. 

Theorem 3.11. Let (X, τ1) and (Y, τ2) be the two ITS and f: X → Y be an injection map,  
IPS*O and IPS*C. If Y is an intuitionistic semi * connected, then X is an intuitionistic semi 
* connected. 

Proof. Assume (X, τ1) is not an intuitionistic semi * connected thats lead us to there exist 

a nonvoid IS*O sets �̃� and �̃� such that 𝑌�̃� =  �̃�  ∪  �̃� and �̃�  ∩  �̃�  =  ∅̃𝐼. Then �̃� = 𝑋 −
 �̃�.Therefore �̃� is both IS*O and IS*C in X. We have f: X → Y is both IPS*O and IPS*C, 

𝑓−1(�̃�) is both IS*O and IS*C in Y . Therefore by theorem 2.10 IS ∗ Fr(𝑓−1(�̃�)) =  ∅̃𝐼. 

Thus by theorem 3.9, Y is not an intuitionistic semi * connected which is contradiction. 
Hence (X, τ1) is an intuitionistic semi * connected. 
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Theorem 3.12. Let (X, τ1) and (Y, τ2) be the two ITS and f: X → Y is an IS*O and IS*C 
injection map and (Y, τ2) is an intuitionistic semi * connected, then (X, τ1) is an intuitionistic 
connected. 

Proof. Assume (X, τ1) is not an intuitionistic connected thats lead us to there exist a 

nonempty IO sets �̃� and �̃� such that 𝑌�̃� =  �̃�  ∪  �̃� and �̃�  ∩  �̃�  =  ∅̃𝐼. Then �̃� = 𝑋 −
 �̃�.Therefore �̃�  is both IOS and ICS in X. Then �̃�  is both IS*O and IS*C. Since f is both 

IS*O and IS*C, 𝑓(�̃�) is an intuitionistic semi * regular in Y. Therefore by theorem 2.10,                   

IS ∗Fr(f((�̃�)) =  ∅̃𝐼. Thus by theorem 3.9, Y is not an intuitionistic semi * connected which 

is contradiction. Thus (X, τ1) is an intuitionistic connected. 

Definition 3.13. Let (X, τ) be an ITS and �̃� be any IS of X. If there exist IS*O sets �̃� and 

�̃� in X satisfying the following properties, then �̃� is called intuitionistic semi * Ci− 
disconnected.  

(i) C1 : �̃� ⊆ �̃� ∪ �̃�, �̃� ∩ �̃� ⊆ X − �̃�, �̃� ∩ �̃�  ≠ ∅̃𝐼, �̃� ∩ �̃�  ≠ ∅̃𝐼.  

(ii) C2: �̃� ⊆ �̃� ∪ �̃�, 𝑈 ̃ ∩ �̃�  ∩  �̃� = ∅̃, �̃� ∩ �̃�  ≠ ∅̃𝐼, �̃� ∩ �̃�  ≠ ∅̃𝐼.  

(iii) C3:  �̃� ⊆ �̃� ∪ �̃�, �̃� ∩ �̃� ⊆ X − �̃�, �̃�  ⊈ X − �̃�, �̃�  ⊈ X − �̃�. 

(iv) C4: �̃� ⊆ �̃� ∪ �̃�, 𝑈 ̃ ∩ �̃�  ∩  �̃� = ∅̃, �̃�  ⊆ X − �̃�, �̃�  ⊆ X − �̃�. 

Definition 3.14. Let (X, τ) be an ITS and �̃� be any IS of X. If �̃� is said to be an intuitionistic 

semi * Ci− connected, then �̃� is not an intuitionistic semi * Ci− disconnected where i = 
1,2,3,4. 

Theorem 3.15. Let (X, τ) be an ITS and �̃� ,  �̃� be any two IS of X. If �̃� ,  �̃� are intuitionistic 

semi * C1− connected and     �̃� ∩ �̃�  ≠ ∅̃𝐼, then �̃� ∪ �̃� is also an intuitionistic semi * C1− 
connected. 

Proof. Let �̃� ,  �̃� be intuitionistic semi * C1− connected. Suppose �̃� ∪ �̃� is not an 

intuitionistic semi * C1− connected. Then there exist an IS*O set �̃� and �̃� such that �̃� ∪  

�̃� ⊆ �̃� ∪ �̃� , �̃� ∪ �̃� ⊆ X –(�̃� ∪ �̃�), (�̃� ∪ �̃�) ∩ �̃� ≠ ∅̃𝐼 and (�̃� ∪ �̃�) ∩ �̃�  ≠ ∅̃𝐼. Since �̃� and  �̃� 

are intuitionistic semi * C1− connected, �̃� ∩ �̃� = ∅̃𝐼 or �̃� ∩ �̃� = ∅̃𝐼 and  �̃� ∩ �̃� = ∅̃𝐼 or  �̃� ∩ 

�̃� = ∅̃𝐼. Since �̃� ∩  �̃� ≠ ∅̃𝐼, 𝑝IV ∈  �̃� ∩  �̃�.                                                                                                                                              

Case (i) Let �̃� ∩ �̃� = ∅̃𝐼 and  �̃� ∩ �̃� = ∅̃𝐼. Then (�̃� ∩ �̃�) ∪ (�̃� ∩ �̃�) = ∅̃𝐼 ⇒ (�̃� ∪  �̃�) ∩ �̃� = ∅̃𝐼 

which is a contradiction.    Case (ii) Let �̃� ∩ �̃� = ∅̃𝐼 and  �̃� ∩ �̃� = ∅̃𝐼. Then (�̃� ∩ �̃�) ∪ (�̃� ∩ 

�̃�) = ∅̃𝐼 ⇒ (�̃� ∪  �̃�) ∩ �̃� = ∅̃𝐼 which is a contradiction. Case (iii) Let �̃� ∩ �̃� = ∅̃𝐼 and  �̃� ∩ 

�̃� = ∅̃𝐼. Then 𝑝IV ∉ �̃� and 𝑝IV ∉ �̃�. This is impossible because 𝑝IV ∈ �̃� ∩  �̃� ⊆ �̃� ∪ �̃�. Case 

(iv) Let �̃� ∩ �̃� = ∅̃𝐼 and  �̃� ∩ �̃� = ∅̃𝐼. This case is similar to case (iii).                                                                             

Hence from the above four cases �̃� ∪ �̃� is an intuitionistic semi * C1− connected. 

Theorem 3.16. Let (X, τ) be an ITS and �̃� , �̃� be any two IS of X. If �̃� , �̃� are intuitionistic 

semi * C2− connected and �̃� ∩ �̃�  ≠ ∅̃𝐼, then �̃� ∪ �̃� is also an intuitionistic semi * C2− 
connected. 
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Proof. Let �̃� , �̃� be intuitionistic semi * C2− connected. Suppose 𝑈 ∪ �̃� is not an 

intuitionistic semi * C2− connected. Then there exist an IS*O set �̃� and �̃� such that �̃� ∪ �̃� 

⊆ �̃� ∪ �̃� ,( �̃� ∪ �̃�) ∩ �̃� ∩ �̃� = ∅̃𝐼 ,( �̃� ∪ �̃� ) ∩ �̃� ≠ ∅̃𝐼 and (�̃� ∪ �̃�) ∩ �̃� ≠ ∅̃𝐼. Since �̃� and �̃� 

are intuitionistic semi * C2− connected, �̃� ∩ �̃� = ∅̃𝐼 or �̃� ∩ �̃� = ∅̃𝐼 and �̃�∩ �̃� = ∅̃𝐼 or �̃�∩ �̃� 

= ∅̃𝐼. Since �̃� ∩ �̃�  ≠ ∅̃𝐼, 𝑝IV ∈ �̃� ∩ �̃�.                                                                                                                                                                                                   

Case (i) Let �̃� ∩ �̃� = ∅̃𝐼 and �̃� ∩ �̃� = ∅̃𝐼. Then (�̃� ∩ �̃�) ∪ (�̃� ∩�̃�)= ∅̃𝐼 ⇒ (�̃� ∪ �̃�) ∩ �̃� = ∅̃𝐼 

which is a contradiction.        Case (ii) Let �̃� ∩ �̃� = ∅̃𝐼 and �̃� ∩�̃� = ∅̃𝐼. Then (�̃� ∩ �̃�) ∪ (�̃� 

∩ �̃�)= ∅̃𝐼  ⇒ (�̃� ∪ �̃�) ∩ �̃� = ∅̃𝐼 which is a contradiction.       Case (iii) Let �̃� ∩ �̃� = ∅̃𝐼 and 

�̃� ∩ �̃� = ∅̃𝐼. Then 𝑝IV ∉  �̃� and 𝑝IV ∉  �̃�. This is impossible because 𝑝IV ∈ �̃� ∩ �̃� ⊆ �̃� ∪ �̃�. 

Case (iv) Let �̃� ∩ �̃� = ∅̃𝐼 and �̃� ∩ �̃� = ∅̃𝐼. This case is similar to case (iii).                                                                                

Hence from the above four cases �̃� ∪ �̃� is an intuitionistic semi * C2− connected. 

Theorem 3.17. Let (X, τ) be an ITS and �̃� , �̃� be any two IS of X. If �̃� and �̃� are overlapping 

intuitionistic semi * C3− connected, then �̃� ∪ �̃�  is also an intuitionistic semi * C3− 
connected.  

Proof. Assume �̃� ∪ �̃� is not an intuitionistic semi * C3− connected thats lead us to there 

exist and IS*O sets �̃� and �̃� such that �̃� ∪ �̃� ⊆ �̃� ∪ �̃�, �̃� ∩ �̃� ⊆ X – ( �̃� ∪ �̃�), �̃� ⊈ X –(�̃� ∪ 

�̃�), �̃� ⊈ X –(�̃� ∪ �̃�). Since �̃� and �̃� are intuitionistic semi * C3− connected, �̃� ⊆ X − �̃� or 

�̃� ⊆ X − �̃� and �̃� ⊆ X − �̃� or �̃� ⊆ X − �̃�. Also by hypothesis �̃� and �̃� are overlapping,  there 

is a point p,  (𝑝I ∈ �̃� ,  𝑝IV ∈ �̃�) or there is a point q, (�̃�I ∈ �̃� ,  �̃�IV ∈ �̃�).                                                                                 

Case (i) Let �̃� ⊆ X − �̃� and �̃� ⊆ X − �̃�. Then �̃� ⊆ (X − �̃�) ∩ (X − �̃�) = X –(�̃� ∪ �̃�) which is 

contradiction to �̃� ⊈ X –(�̃� ∪ �̃�).    Case (ii) Let �̃� ⊆ X − �̃� and �̃� ⊆ X − �̃�. This is similar 

to case (i).                                                                                                Case (iii) Let �̃� ⊆ 

X − �̃� and �̃� ⊆ X − �̃�. Suppose there is a point p, (𝑝I ∈ �̃� ,  𝑝IV ∈ �̃�). Since �̃� ⊆ X − �̃� and 

�̃� ⊆ X − �̃�,  �̃� ∪ �̃� ⊆ �̃� ∪ �̃� ⊆ (X − �̃�) ∪ (X − �̃�) = X – (�̃� ∩ �̃�). Therefore �̃� ∩ �̃� ⊆ X –(�̃� ∪ 

�̃�) = (X − �̃�) ∪ (X − �̃�). We have 𝑝I ∈ �̃� and 𝑝IV ∈ �̃� ⇒ 𝑝IV ∈ �̃� ⇒ 𝑝IV ∈ �̃� ∩ �̃� ⊆ (X − �̃�) ∩  

(X − �̃�) ⇒ 𝑝IV ∈ X − �̃� and 𝑝IV ∈ X − �̃� which is a contradiction. Similarly if there is a point 

q, (�̃�I ∈ �̃� ,  �̃�IV ∈ �̃�), we get a contradiction.                                                                                                  

Case (iv) Let �̃� ⊆ X − �̃� and �̃� ⊆ X − �̃�. This is similar to case (iii).                                                                                              

Therefore from the above four cases �̃� ∪ �̃� is an intuitionistic semi * C3− connected. 

Theorem 3.18. Let (X, τ) be an ITS and �̃� , �̃� be any two IS of X. If �̃� and �̃� are overlapping 

intuitionistic semi * C4− connected, then �̃� ∪ �̃�  is also an intuitionistic semi * C4− 
connected.  

Proof. The proof is similar to previous theorem. 
 
4. INTUITIONISTIC SEMI * COMPACT SPACES 

Definition 4.1. Let Đ̃  be a family of IS*O sets of X, and let (X, τ) be an ITS. Then the 

collection Đ̃ is called an intuitionistic semi * open cover (summarizing IS*-OC) of X if ⋃ Đ̃ 

= �̃�𝐼. 
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Definition 4.2. An ITS (X, τ) is said to be an intuitionistic semi * compact (summarizing 
IS*-cpt) if every IS*-OC of X has a finite sub cover. 

Theorem 4.3. Let (X, τ) be an ITS. Then the following results hold. 

(i) Every IS*-cpt implies intuitionistic compact.  

(ii) Every intuitionistic semi compact implies IS*-cpt.  

Proof. (i) Let (X, τ) be an IS*-cpt and {�̃�α} be an intuitionistic open cover for X. Then  {�̃�α} 

is an IS*-OC for X. Since X is an IS*-cpt, {�̃�α} has a finite subcover. Hence X is an 

intuitionistic compact. (ii) Let (X, τ) be an intuitionistic semi compact and {�̃�α} be an IS*-

OC for X. Then {�̃�α} is an intuitionistic semi open cover for X. Since X is an intuitionistic 

semi compact, {�̃�α} has a finite subcover. Hence (X, τ) is an IS*-cpt.  

Theorem 4.4. Let (X, τ) be an ITS. Then (X, τ) is IS*-cpt if and only if every family of IS*C 
sets in X with void intersection has a finite subfamily with void intersection. 

Proof. Let (X, τ) be an IS*-cpt and {�̃�α}α∈J be a family of IS*C sets in X such that ∩{�̃�α}α∈J 

= ∅̃𝐼. Then ∪ {𝑋 −  �̃�α}α∈J = �̃�𝐼 is an IS*-OC for X. Since X is an IS*-cpt, X has a finite 

subcover, namely {X − �̃�α1, X − �̃�α2, ..., X − �̃�αn } for X. Therefore �̃� = ∪i =1 to n { X − �̃�αi}. 

Thus ∩i =1 to n {  �̃�αi} = ∅̃𝐼. Conversely, assume that every family of IS*C sets in (X, τ) with 

empty intersection has a finite subfamily with void intersection. Let {�̃�α}α∈J be an IS*-OC 

for (X, τ) . Then ∪ {�̃�α}α∈J = �̃�𝐼. Therefore {𝑋 −  �̃�α}α∈J =  ∅̃𝐼. Since X − �̃�α is IS*C set for 

each α ∈ J, by hypothesis there is a finite subfamily has a empty intersection. That is ∩i 

=1 to n (X− �̃�α) =  ∅̃𝐼. Then ∪i =1 to n �̃�α = �̃�𝐼. Hence (X, τ) is an IS*-cpt. 

Theorem 4.5. Let (X, τ1) and (Y, τ2) be any two ITS and f : (X, τ1) → (Y, τ2) be an IS*O 
function. If (Y, τ2) is an IS*-cpt, then (X, τ1) is an IS*-cpt. 

Proof. Let {�̃�α}  be an IS*-OC for (X, τ1). Then {f (�̃�α)} is an IS*-OC for (Y, τ2). Since (Y, 

τ2) is an IS*-cpt, {f(�̃�α)} has an finite subcover, namely { f(�̃�α1), f(�̃�α2), ..., f(�̃�αn)}. Therefore 

{�̃�α1, �̃�α2, ..., �̃�αn } is a finite subcover for( X, τ1). Hence      (X, τ1) is an IS*-cpt. 

Theorem 4.6. Let (X, τ1) and (Y, τ2) be any two ITS and f : (X, τ1) → (Y, τ2)  be an IS*O 
function. If (Y, τ2) is an IS*-cpt, then (X, τ1) is an intuitionistic compact.  

Proof. Let {�̃�α}be an intuitionistic open cover for (X, τ1). Since f is an IS*O  and {�̃�α} is an 

intuitionistic open cover for (Y, τ2), {f (�̃�α )} is an IS*-OC for (Y, τ2). Since (Y, τ2) is an IS*-

compact, {f (�̃�α )} has an finite subcover,namely {f(�̃�α1), f(�̃�α2), ..., f(�̃�αn)}. Therefore {�̃�α1, 

�̃�α2, ..., �̃�αn} is a finite subcover for( X, τ1). Hence (X, τ1) is an intuitionistic compact.  

Theorem 4.7. Let (X, τ1) and (Y, τ2) be any two ITS and f : (X, τ1) → (Y, τ2) be a surjection 
and IS*-Cts function. If (X, τ1) is an IS*-cpt, then (Y, τ2) is an intuitionistic compact.  

Proof. Let {�̃�α}  be an intuitionistic open cover for (Y, τ2). Since f is an IS*-Cts, {𝑓−1 (�̃�α)} 

is an IS*-OC for (X, τ1). Since (X, τ1) is an IS*-cpt, {𝑓−1 (�̃�α)} has  finite subcover, namely 
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{𝑓−1 (�̃�α1), 𝑓−1 (�̃�α2), ..., 𝑓−1(�̃�αn)}. Therefore {�̃�α1, �̃�α2, ..., �̃�αn } is a finite subcover for (Y, 
τ2). Hence (Y, τ2) is an intuitionistic compact.  

Definition 4.8. An ITS (X, τ) is said to be an intuitionistic semi * Lindelof (summarizing 
IS*-L) if every IS*-OC contains countable subcover. 

Theorem 4.9. Let f : (X, τ1) → (Y, τ2) be an surjection, IS*-Cts and (X, τ1) be an IS*-L. 
Then (Y, τ2) is an intuitionistic lindelof.  

Proof. Let (X, τ1) be an IS*-L and {�̃�α } be an intuitionistic open cover for (Y, τ2).Then {𝑓−1 

(�̃�α)} is an IS*-OC for (X, τ1). Since (X, τ1) is IS*-L, {𝑓−1 (�̃�α)} contains a countable 

subcover say, {𝑓−1 (�̃�αn)}. Then  { �̃�αn} has a countable subcover for (Y, τ2). Thus (Y, τ2) 
is an intuitionistic lindelof. 

Theorem 4.10. Let f : (X, τ1) → (Y, τ2) be an surjection, IS*-Irresolute and (X, τ1) be an 
IS*-L. Then (Y, τ2) is an IS*-L. 

Proof. Let (X, τ1) be an IS*-L and {�̃�α} be an IS*-OC for (Y, τ2). Then {𝑓−1 (�̃�α)} is an IS*-

OC for (X, τ1). Since (X, τ1) is       IS*-L, {𝑓−1 (�̃�α)} contains a countable subcover say, 

{𝑓−1 (�̃�αn)}. Then {�̃�αn}is a countable subcover for (Y, τ2). Thus         ( Y, τ2) is an IS*-L.  

Theorem 4.11. Let f : (X, τ1) → (Y, τ2) be an intuitionistic pre semi * open and (Y, τ2) be 
an IS*-L. Then (X, τ1) is an      IS*-L.  

Proof. Let (Y, τ2) be an IS ∗−L and {�̃�α} be an IS*-OC for (X, τ1). Then {f(�̃�α)} is an IS*-

OC for Y . Since (Y, τ2) is IS*-L, {f(�̃�α)} contains a countable subcover say, {f(�̃�αn)}. Then 

{�̃�αn} is a countable subcover for (X, τ1). Thus ( X, τ1) is an    IS*-L. 

Theorem 4.12. Let f : (X, τ1) → (Y, τ2) be an IS*O function and (Y, τ2) be an IS*-L. Then 
(X, τ1) is an intuitionistic lindelof.  

Proof. Let (Y, τ2) be an IS ∗−L and {�̃�α} be an intuitionistic open cover for ( X, τ1). Then 

{f(�̃�α)} is an IS*-OC for (Y, τ2). Since (Y, τ2) is IS*-L, {f(�̃�α)} contains a countable subcover 

say, {f(�̃�αn)}. Then {f(�̃�αn)} is a countable subcover for        (X, τ1). Thus (X, τ1) is an 
intuitionistic lindelof. 
 
5. CONCLUSION 

The different qualities of intuitionistic semi * connectedness and compactness are 
covered in this article. We will continue to investigate different concepts, such as maximal 
and minimal open sets, separation axioms in IS*O sets. 
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