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Abstract 

Lytic Polysaccharide Monooxygenases (LPMOs) and chitinases constitute pivotal chitinolytic enzymatic 
components in Bacillus cereus, exerting significant influence on the degradation of chitin. This investigation 
used bioinformatics tools to endeavor the evolution and action mechanisms of enzymes (chitinases and 
BcLPMO10B) influencing chitin and cellulose degradation in B. cereus, employing computational methods 
for phylogenetic analysis, 3D structure modeling, validation, and molecular dynamics simulations (MDS), 
offering insights into their potential applications in biofuels, medicine, and agriculture. Phylogenetic analysis 
of chitinases and BcLPMO10B exhibit strong associations with other bacteria, indicating a potential history 
of shared genetic material over time. To achieve the objective of analyzing action mechanism, the homology 
modeling technique was employed to construct three-dimensional structures of BcLPMO10B and chitinases 
using SwissModel, I-TASSER, and ROBETTA Baker Laboratory. Following the comparative validation of 
predicted structures utilizing various servers, 3D structures generated by the Swiss Model were chosen for 
subsequent computational analysis. Subsequently, docking studies elucidated the functional significance 
of target proteins; through the prediction of ligand binding modes. The research also explored the dynamic 
behaviors of BcLPMO10B and chitinases by MDS. AutoDock Vina revealed robust binding affinities and 
unveiled key interacting amino acids of chitinases with N-acetyl-D(+)-glucosamine (GLcNAc) and 
BcLPMO10B with 2,6-dimethoxyphenol. Furthermore, MDS validated the stability of these complexes by 
assessing the temporal motion of individual atoms within these complexes, employing Root Mean Square 
Deviation (RMSD) analysis, recording low RMSF values, and evaluating the extent of hydrogen bonding 
interactions. The implications of these complexes extend the enzymatic efficiencies, functionalities and 
substrate binding affinities. In sum, this computational analysis augments our comprehension of these 
enzymes and highlights their potential applications in biotechnology and pharmaceutical research.  

Keywords: Bacillus cereus, Chitin-Degrading Enzymes, In-Silico Characterization, Molecular Docking, 
Molecular Dynamic Simulation, Phylogenetic Analysis. 
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1. INTRODUCTION 

Chitin is a versatile biopolymer that ranks second to cellulose among the most abundant 
polymers on Earth, found in algae, crustaceans, insects, and fungi. It is principally 

composed of (1⇾4)-β-linked N-Acetyl-D-glucosamine (GLcNAc) residues. Interestingly, 
chitin exists in three distinct structural forms, known as alpha, beta, and gamma. Among 
these, the alpha form predominates as the most commonly encountered variation (Beier 
and Bertilsson 2013). Chitin, when degraded into simple monomers, can be utilized in 
various medical, agricultural and industrial applications (Bhattacharya, Nagpure, and 
Gupta 2007). Chitinases are chitinolytic enzymes which can hydrolyze glycosidic bond 
(Oyeleye and Normi 2018). Lytic Polysaccharide Monooxygenases (LPMOs) have also 
been reported to be involved in chitin degradation through an oxidative mechanism, they 
can enhance chitinolytic activity in synergy with other chitinases (Mutahir et al. 2018). 
Microorganisms particularly bacteria are major source of chitinases and LPMOs 
(Bhattacharya et al. 2007).  Bacillus cereus, a Gram-positive, rod-shaped bacterium, is 
commonly encountered in terrestrial environments, including soil, food matrices, and 
marine sponges. It exhibits a diverse repertoire of virulence determinants, encompassing 
phospholipase C, cereulide, sphingomyelinase, metalloproteases, and cytotoxin K (El-
Arabi and Griffiths 2021; Esmkhani and Shams 2022; Yang et al. 2023). Notably, certain 
strains of B. cereus pose a risk to human health because of their ability to generate 
spores, which can lead to foodborne illnesses (Bottone 2010; Esmkhani and Shams 
2022). Conversely, other strains demonstrate probiotic attributes in animal hosts and 
establish mutualistic symbioses with select plant species. It is noteworthy that B. cereus 
exhibits facultative anaerobic behavior and proficiency in the formation of robust 
endospores. These dual traits, coupled with the bacterium's propensity for spore and 
biofilm production, present notable challenges within the context of food safety, 
particularly regarding the potential for contamination. Additionally, flagellar motility 
augments biofilm development (Roberto et al. 2020). 

The ecological niches where B. cereus thrives encompass decomposing organic matter, 
freshwater and marine ecosystems, phytobiomes, fomites, and the gastrointestinal tracts 
of various animals. This bacterium is an indigenous constituent of soil ecosystems, 
thereby contributing to soil contamination (Deka et al. 2022). B. cereus spores are 
ubiquitously dispersed throughout the environment, comprising dust, soil, cereal crops, 
aqueous environments, and other reservoirs. Consequently, B. cereus emerges as a 
recurrent contaminant in raw agricultural commodities, with starchy foods like rice and 
potatoes being particularly associated with emetic (vomiting) toxin-mediated outbreaks. 
B. cereus, and its broader genus Bacillus, exhibit remarkable versatility in 
biotechnological and industrial domains, exerting profound influences across diverse 
facets of human activity. These impacts extend to both pathogenic and beneficial bacterial 
species within the Bacillus genus, as well as numerous industrial sectors (El-Arabi and 
Griffiths 2021; Kowalska et al. 2023; Rodrigo, Rosell, and Martinez 2021). 
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B. cereus holds significant importance in various industrial applications. Bacillus species, 
including B. cereus, are utilized for the production of extracellular enzymes, such as 
proteases and amylases, which have wide-ranging applications in industries such as 
detergent manufacturing and food processing (Demirkan, Aybey Çetinkaya, and Abdou 
2021; Vaikundamoorthy et al. 2018). B. cereus demonstrates potential as a producer of 
primary metabolites, including vitamins and ribonucleosides. Bacillus species, including 
B. cereus, exhibit the capability to synthesize secondary metabolites like bacteriocins and 
biosurfactants, showcasing their versatility across diverse industrial sectors (Feliatra et 
al. 2021). Select strains of B. cereus possess the ability to promote plant growth, making 
them valuable as inoculants for enhancing crop yields and overall productivity. B. cereus 
is under investigation for its effectiveness in bioremediation applications, notably in the 
decolorization of industrial effluents generated by pulp and paper production. These 
efforts have the potential to mitigate environmental pollution associated with waste 
disposal practices (Jan et al. 2019; Kulkova et al. 2023; Saleem, Ahmad, and Ahmad 
2014). 

LPMOs and chitinases represent pivotal enzymes with substantial roles in the 
degradation of biomass including both cellulose and chitin, playing essential roles in 
ecological carbon cycling and industrial applications (Eijsink et al. 2019; Li et al. 2023; 
Zhang et al. 2023). LPMOs constitute a class of copper-dependent enzymes that execute 
polysaccharide cleavage through oxidative mechanisms (Eijsink et al. 2019; Li et al. 2023; 
Zhang et al. 2023). Some LPMOs can oxidize C1 carbon and while others can break C4 
carbon of the glycoside. However, some of the LPMOs can oxidize both of the C4 and C1 
carbon of the glycosidic linkage (Li et al. 2012). LPMOs often collaborate synergistically 
with cellulases to augment the deconstruction of biomass (Eijsink et al. 2019; Li et al. 
2023; Zhang et al. 2023). LPMOs are comprised of AA9-AA10 and AA13-AA15 families 
of the CAZy database (Levasseur et al. 2013) that have different regioselectivities and 
substrate specificities. The discovery of AA9 LPMOs has notably reshaped our 
comprehension of cellulose degradation with oxidizing activity by fungi. In contrast, AA10 
LPMOs family can be derived from bacteria, archaea, viruses and fungi that can degrade 
the chitin (Zhou et al. 2019). Moreover, LPMOs have been instrumental in facilitating the 
production of cellulose nanofibrils, bacterial pathogenicity, and viral virulence expanding 
their practical relevance (Agostoni, Hangasky, and Marletta 2017; Chiu et al. 2015; Eijsink 
et al. 2019; Li et al. 2023; Zhang et al. 2023). 

In contrast, chitinases represent a class of hydrolytic enzymes responsible for catalyzing 
chitin degradation and are synthesized by a diverse spectrum of microorganisms with 
GH18 and GH19 classes (Levasseur et al. 2013). In natural contexts, microbial chitinases 
shoulder the primary responsibility for chitin decomposition, thereby exerting a pivotal role 
in maintaining the carbon-to-nitrogen ratio equilibrium within ecosystems (Adrangi and 
Faramarzi 2013; Gomaa 2021; Rathore and Gupta 2015). Beyond ecological implications, 
chitinases have found multifaceted applications in human healthcare, including the 
production of pharmaceutically significant agents, the isolation of protoplasts from fungi 
and yeast, the control of pathogenic fungi, and the management of chitinous waste (Singh 
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et al. 2020). Notably, the generation of chitooligosaccharides during chitin degradation 
has been associated with a range of human health benefits, including antimicrobial, 
antioxidant, anti-inflammatory, and antitumor properties, underscoring their relevance in 
medical and therapeutic contexts (Anil 2022; Azuma et al. 2015). 

In-silico approaches are computational methods that are used to study biological 
systems. These methods have become increasingly important in the field of structural 
biology and enzyme studies. Computational analysis can help in predicting as well as 
determining the structural, functional, and even interaction of different proteins with other 
molecules (Bhat et al. 2022; Kęska, Gustaw, and Stadnik 2021). In this respect, with the 
help of structural analysis of the proteins using different computational methods, their 
possible ways of interactions with the atoms and molecules of ligands can facilitate in 
designing of new and novel drugs, along with mechanism of action (Agnihotry et al. 2021; 
Batool, Ahmad, and Choi 2019; Dhiman et al. 2023; Hasan, Rony, and Ahmed 2021; 
Kingdon and Alderwick 2021). In parallel, in-silico studies can also help in understanding 
the enzymatic mechanism of action by using computational methods like molecular 
docking and simulation to model the interactions between enzymes and their substrates. 
In this way, alterations in an enzyme's structure can be predicted to influence the 
enzyme's catalytic activity.  Computational approaches have explored a new gateway to 
study the structural biology of proteins and other biomolecules for the prediction of their 
behavior to understand the complex biological systems that would have been difficult to 
provide experimentally (Agnihotry et al. 2021; Batool et al. 2019; Dhiman et al. 2023; 
Hasan et al. 2021; Kingdon and Alderwick 2021). 

In a previous study, tetra-modular LPMO [BcLPMO10A, composed of a catalytic domain, 
two fibronectin-type III (FnIII)-like domains, and a carbohydrate-binding module (CBM5)] 
from B. cereus was studied to validate its crucial role in promoting substrate binding and 
protecting the enzyme from inactivation, ultimately enhancing chitinase activity during α-
chitin degradation (Mutahir et al. 2018). This study aimed to explore the evolutionary 
insights and mechanism of action of enzymes (chitinases and LPMO) that exert significant 
influence on the degradation of chitin and cellulose present in B. cereus, using 
Bioinformatics tools. For the evaluation of evolutionary relation of B. cereus chitinases 
and LPMO with other related bacterial species, we constructed phylogenetic trees using 
computational methodology. 

For the determination of action mechanism of chitin degrading enzymes, three-
dimensional (3D) structures of chitin binding single domain LPMO (called herein as 
BcLPMO10B) and chitinases (N-acetylglucosaminidase, and Endochitinase) were 
constructed using template-based and artificial intelligence (AI)-based homology 
modeling, that provides insight into the architectural arrangements of these enzymes. 
These predicted models of BcLPMO10B and chitinases were compared with different 
validation methods to select the best 3D models which further analyze their interactions 
with native substrates and to predict their potential mode of action. Using docking studies, 
this investigation predicted ligand binding modes for these target proteins and sheds light 
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on their functional roles. This study also explored the dynamic behavior of chitinases and 
BcLPMO10B, using molecular dynamics simulations (MDS). By simulating the temporal 
motion of individual atoms, we endeavored to unravel the impact of structural alterations 
on the enzymatic functionalities centered on addressing research queries about the 
structural and functional attributes of BcLPMO10B and chitinases sourced from B. cereus, 
employing in-silico methodologies. The insights garnered from this investigation are 
poised to advance our comprehension about the mechanism and potential roles played 
by these enzymes in biological processes, potentially bearing relevance for diverse 
applications, such as in the production of next-generation biofuels, medicine and 
agriculture. 
 
2. MATERIAL AND METHODS 

Sequences of Chitin-Degrading Enzymes 

The sequences of chitinases and LPMO were identified from the GH18 and AA10 families 
of CAZy database (Drula et al. 2022). While, the sequences of chitin-degrading enzymes, 
specifically N-acetylglucosaminidase (Chi1), endochitinase (Chi2), and a single domain 
LPMO (BcLPMO10B) originating from the B. cereus, were retrieved from the UniProt 
database using the respective accession IDs: Q81AG3, Q81IF9, and Q81CE4.  

Physiochemical Properties  

Expasy ProtParam web server (https://web.expasy.org/protparam/) was employed to 
forecast the physicochemical characteristics of the Chi1, Chi2, and BcLPMO10B proteins 
(Gasteiger et al. 2003, 2005; Wilkins et al. 1999). This analysis yielded various 
physicochemical parameters, including molecular weight, extinction coefficient (Ec), 
theoretical isoelectric point (pI), the total count of positive (+R) and negative (-R) residues, 
aliphatic index (AI), grand average of hydropathy (GRAVY), and instability index (II) for 
these proteins. 

Structural and Functional Characterization 

For a comprehensive understanding of the structural and functional characterization of 
Chi1, Chi2, and BcLPMO10B proteins, we turned to the InterPro online server 
(https://www.ebi.ac.uk/interpro/) (Paysan-Lafosse et al. 2023). InterPro delves deep into 
protein analysis by providing structural and functional insights through a multifaceted 
approach that categorizes proteins into families, predicts domains, and identifies critical 
sites using predictive models called signatures. It integrates a wide array of databases, 
including NCBIfam, SFLD, PANTHER, HAMAP, PROSITE profiles, PROSITE patterns, 
SMART, CDD, PRINTS, Pfam, PIRSF, SUPERFAMILY, and CATH-Gene3D, along with 
tools like Phobius, SignalP, Coils, MobiDBLite, and TMHMM, to facilitate the identification 
of various protein features. InterPro's comprehensive approach extends to classifying 
proteins into different categories using databases like SignalP_EUK, 
SignalP_GRAM_POSITIVE, SignalP_GRAM_NEGATIVE, AntiFam, FunFam, and 
PIRSR, forming the InterPro consortium, a robust resource for protein analysis that 

https://web.expasy.org/protparam/
https://www.ebi.ac.uk/interpro/
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capitalizes on the strengths of multiple databases. Additionally, Argot2 is used to extract 
functional information from Chi1, Chi2, and BcLPMO10B proteins, employing semantic 
clustering of Gene Ontology (GO) terms and a weighting scheme for efficient inference 
of biological attributes. This is accomplished through methods such as BLAST and 
HMMER, providing valuable insights into the functional characteristics of these proteins. 

Phylogenetic Analysis  

In order to determine the evolutionary origin, functions and relationships of Chi1, Chi2, 
and BcLPMO10B proteins in B. cereus with other different but related bacterial species, 
the phylogenetic analysis was performed. The homologs sequences of Chi1, Chi2, and 
BcLPMO10B proteins in different bacterial species were searched by using basic local 
alignment search tool for proteins (BLASTp) (Altschul et al. 1997, 2005) from 
experimental clustered nr database. The clustered nr database is more compact and 
smaller that shows sequence length and identity at 90% with more taxonomic depth 
(Steinegger and Söding 2017). The obtained sequences of Chi1, Chi2, and BcLPMO10B 
proteins were aligned separately in MEGA 11 software (Tamura, Stecher, and Kumar 
2021) using Clustal W. Prior to phylogenetic analysis, best substitution models were 
required to be identified for the phylogenetic tree construction. Maximum likelihood 
method (MLM) was used for the neighbor joining tree. The best substitution model was 
selected on the bases of lowest BIC (Bayesian Information Criterion) value. The 
phylogenetic tree was then constructed applying Bootstrap method with 1000 replicates 
by setting best substitution model and default setting (Keane et al. 2006; Tamura et al. 
2011; Uddin et al. 2022; Zhang et al. 2019).  

Secondary Structure Prediction 

We employed the SOPMA tool (https://npsa-prabi.ibcp.fr/cgi-
bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html) for forecasting the secondary 
structures of the Chi1, Chi2, and BcLPMO10B proteins. In the analysis, default settings 
were used, which included four conformational states (helix, sheet, turn, and coil), a 
window width of 17, and a similarity threshold set at 8 (Geourjon and Deléage 1995). 
Additionally, to depict the secondary structure in a graphical cartoon format, we 
harnessed the PSI-blast-based secondary structure prediction tool known as PSIPRED 
(McGuffin, Bryson, and Jones 2000), accessible through the online server at 
http://bioinf.cs.ucl.ac.uk/psipred/. This was applied to the Chi1, Chi2, and BcLPMO10B 
proteins. 

Homology Modeling 

The ab initio modeling of the 3D structures of Chi1, Chi2, and BcLPMO10B proteins was 
necessitated by the absence of experimentally validated structures for these proteins in 
both the Protein Data Bank (PDB) and the UniProt database (UniProtKB). The UniProt 
database provided the protein IDs for Chi1 (Q81AG3), Chi2 (Q81IF9), and BcLPMO10B 
(Q81CE4). Subsequently, these protein IDs underwent submission to the SWISS-
MODEL web server, a highly automated tool utilizing homology-based modeling for 

https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
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structure generation (Waterhouse et al. 2018). A 40% or higher sequence identity with 
proteins of known structures allowed for confident comparative modeling of Chi1, Chi2, 
and BcLPMO10B. 

However, incomplete structures due to missing residues and gaps in the pairwise 
alignment with experimental templates (PDB codes 4S3J, 6BT9, and 5WSZ) necessitated 
the synthesis of the complete structures for each protein. This was achieved through both 
the I-TASSER server (http://zhanglab.dcmb.med.umich.edu/I-TASSER) (Yang and 
Zhang 2015; Zheng et al. 2021; Zhou et al. 2022) and the ROBETTA Baker server 
(http://robetta.bakerlab.org), employing the RoseTTAFold method (Kim, Chivian, and 
Baker 2004), a default option utilizing a deep learning-based modeling approach known 
for its superior performance. The selection of the most reliable 3D structures was based 
on confidence values, which range from 0.00 (low confidence) to 1.00 (high confidence), 
with higher values indicating greater reliability. Furthermore, the AlphaFold-predicted 
structures of Chi1, Chi2, and BcLPMO10B can be accessed on UniProt and were 
compared with the predicted structures obtained from the I-TASSER server and 
ROBETTA Baker server. 

Structure Validation  

The 3D structures of Chi1, Chi2, and BcLPMO10B proteins generated by SwissModel, I-
TASSER, ROBETTA Baker Laboratory, and AlphaFold underwent thorough validation 
using PROCHECK, ERRAT, and Verify3D on the UCLA-DOE LAB—SAVES v6.0 platform 
(https://saves.mbi.ucla.edu/). PROCHECK (Laskowski et al. 1993; Rodriguez et al. 1998) 
assessed structural conformation through Ramachandran plots, requiring over 90% of 
amino acid residues to fall within favored regions for high-quality models. ERRAT 
(Colovos and Yeates 1993) analyzed non-bonded interactions and overall structure 
quality, expressed as the percentage of residues with error values below the 95% 
rejection limit. Verify3D (Bowie, Lüthy, and Eisenberg 1991; Lüthy, Bowie, and Eisenberg 
1992) determined compatibility by comparing 3D atomic models with their amino acid 
sequences. 

We also employed the QMEAN server (https://swissmodel.expasy.org/qmean/) to 
calculate a composite scoring function for the 3D structures. This allowed us to estimate 
both local (per-residue) and global (entire structure) errors (Benkert, Künzli, and Schwede 
2009). The QMEANDisCo global score is the average per-residue score, and the provided 
error estimate is based on the standard deviation between QMEANDisCo global score 
and lDDT (ground truth). It is calculated using models of similar size to enhance prediction 
reliability. A QMEAN score below -4.0 indicates a lower-quality predicted structure 
(Kryshtafovych, Fidelis, and Tramontano 2011; Olowosoke et al. 2023).  

For an overarching evaluation of each model's quality, we utilized the ProSA tool 
(https://prosa.services.came.sbg.ac.at/prosa.php). The results were expressed as Z-
scores, which indicated the quality of the modeled proteins compared to all other 

http://zhanglab.dcmb.med.umich.edu/I-TASSER
http://robetta.bakerlab.org/
https://saves.mbi.ucla.edu/
https://swissmodel.expasy.org/qmean/
https://prosa.services.came.sbg.ac.at/prosa.php
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experimental protein structures determined through methods such as X-ray 
crystallography and NMR (Wiederstein and Sippl 2007). 

The best predicted structures of Chi1, Chi2, and BcLPMO10B proteins were further 
validated by utilizing MolProbity (http://molprobity.biochem.duke.edu/) to evaluate model 
quality (Williams et al. 2018). 

Active Site Prediction 

We employed the Computed Atlas of Surface Topography of proteins, known as CASTp 
3.0, to anticipate the active sites within the 3D Swiss Models of Chi1, Chi2, and 
BcLPMO10B proteins. CASTp (http://sts.bioe.uic.edu/castp/index.html?4jii) is an online 
tool used for identifying and measuring empty spaces within 3D protein structures (Tian 
et al. 2018). We submitted the modeled Chi1, Chi2, and BcLPMO10B proteins to this 
server, which then predicted the specific amino acids responsible for binding interactions. 

Molecular Docking 

Protein Preparation 

To prepare the 3D-modeled structures of Chi1, Chi2, and BcLPMO10B proteins for 
molecular docking, a series of steps were undertaken using MGL tools (Ahmed et al. 
2021). These steps included removing water molecules, ligands, non-polar hydrogen 
charges, and side chains other than the standard 20 amino acids from each protein 
structure. Any missing atoms on the amino acids within these structures were 
meticulously restored. Furthermore, polar hydrogens, hydrogen atoms for histidine 
residues, and Kollman charges were meticulously added to all protein structures. Lastly, 
a thorough check was conducted to ensure the balanced distribution of charges across 
the entire set of protein residues. The protein structures were then subjected to 
optimization and energy minimization using Discovery Studio. 

Ligand Preparation 

We obtained the structures of the ligands, GLcNAc (PubChem CID: 439174) for Chi1 and 
Chi2, and 2,6-Dimethoxyphenol (PubChem CID: 7041) for BcLPMO10B proteins, from 
the PubChem database (https://pubchem.ncbi.nlm.nih.gov/). These ligand structures 
underwent a minimization process, and their torsion angles were carefully defined in 
preparation for the molecular docking procedure. 

Docking 

The process of molecular docking involving protein-ligand complexes was facilitated 
using AutoDock (version 4.2.6) (Ahmed et al. 2021). Both proteins and ligands were 
meticulously prepared and saved in. pdbqt files. Atom-specific affinity maps for various 
ligand atom types, along with electrostatic and desolvation potentials, were generated 
through the Auto-grid tool. During the molecular docking procedure, the protein molecule 
remained rigid. The outcomes of the molecular docking experiments were visualized 
using PyMol and Discovery Studio. To ascertain the nature and extent of protein-ligand 

http://molprobity.biochem.duke.edu/
http://sts.bioe.uic.edu/castp/index.html?4jii
https://pubchem.ncbi.nlm.nih.gov/
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interactions, we utilized the Protein-Ligand Interaction Profiler, available at https://plip-
tool.biotec.tu-dresden.de/plip-web/plip/index (Adasme et al. 2021). Additionally, we 
assessed the drug score of the docked files through ProteinsPlus (https://proteins.plus/) 
(Schöning-Stierand et al. 2020). 

Molecular Dynamics Simulation 

Over a 100-nanosecond timeframe, MDS were executed using the Desmond software, 
developed by Schrödinger LLC (Bowers et al. 2006). The initial phase of MDS involved 
generating receptor and ligand complexes through docking experiments. Molecular 
docking studies predict the static binding state of ligands within a protein's active site, 
offering valuable insights into the spatial orientation of molecules in the binding site 
(Ferreira et al. 2015). To facilitate MDS, which track atomic movements over time using 
Newton's classical equations of motion (Hildebrand, Rose, and Tiemann 2019; Rasheed 
et al. 2021), the receptor-ligand complexes (specifically, Chi1-GLcNAc, Chi2-GLcNAc, 
and BcLPMO10B-2,6-dimethoxyphenol) underwent preprocessing through the Protein 
Preparation Wizard within Maestro. This involved complex optimization and minimization 
steps, with all systems constructed using the System Builder tool. The simulation 
environment adopted the Transferable Intermolecular Interaction Potential 3 Points 
(TIP3P) solvent model within an orthorhombic box, with counter ions introduced for model 
neutrality (Maiorov and Crippen 1994; Shivakumar et al. 2010). To replicate physiological 
conditions, a 0.15 M sodium chloride (NaCl) concentration was incorporated. The NPT 
ensemble was chosen for the entire simulation, maintaining a temperature of 300 K and 
a pressure of 1 atm. Before the simulation, the models underwent relaxation. Trajectory 
data were saved at regular 100-picosecond intervals throughout the simulation. The 
simulation's stability was evaluated by monitoring the root mean square deviation (RMSD) 
of both protein and ligand structures over time. 
 
3. RESULTS 

Sequences of Chitin-Degrading Enzymes 

The amino acid sequences of the Chi1, Chi2, and BcLPMO10B proteins in B. cereus, 
consisting of 430, 674, and 221 amino acid residues, respectively, were acquired and 
employed as primary data in the present investigation. 

Physiochemical Properties  

The Expasy server's ProtParam tool predicted physicochemical parameters of chitin-
degrading enzymes in B. cereus. Physicochemical attributes play a pivotal role in 
elucidating the structural and functional characteristics of proteins, facilitating the design 
and prediction of optimized protein variants tailored for specific molecular mechanisms 
and applications (Wang and Zou 2023). Table 1 presents the computed values of these 
physicochemical parameters for the Chi1, Chi2, and BcLPMO10B proteins. 
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Table 1: Physiochemical parameters of Chi1, Chi2, and BcLPMO10B proteins 

Sr. No. Physiochemical parameters Chi1 Chi2 BcLPMO10B 

1 Length in base pairs 430 674 221 

2 Mol. Wt. in kD 48.19 74.23 24.11 

3 Ec (M-1 cm-1, at 280nm) 64290 161160 39545 

4 pI 9.38 5.77 9.24 

5 R+ 46 64 22 

6 R- 35 71 16 

7 AI 84.79 68.89 79.37 

8 GRAVY -0.284 -0.548 -0.299 

9 II 35.49 21.03 38.3 

Structural and Functional Characterization 

The structural and functional characterization of protein sequence can help in 
understanding the properties, biological functions, molecular interactions, evolution and 
biological pathways. Bioinformatics tools compare the gene or protein homologs to 
characterize their biological insights and application (María Hernández-Domínguez et al. 
2020). In the current study. chi1, chi2 and BcLPMO10B proteins sequences are 
characterized for their structural and functional annotation using various databases such 
as InterPro, PANTHER, Pfam, and others. The detailed characterized information of 
domains, homologous super-families, and related features of chi1, chi2 and BcLPMO10B 
proteins are represented in Supplementary Material Tables S1, S2, and S3. Figure 1 
illustrates the domains of Chi1, Chi2, and BcLPMO10B proteins, highlighting their 
respective locations and sequences. Similarly, another computational analysis, GO, used 
the  enrichment analysis, network analysis, or machine learning for identifying the 
biological processes, molecular functions, and cellular components of genes and proteins 
(Sengupta et al. 2022). Table 2 provides molecular function, biological process, and 
cellular components of Chi1, Chi2, and BcLPMO10B proteins. Detailed GO annotations 
(molecular function, biological process, and cellular components) of Chi1, Chi2, and 
BcLPMO10B proteins including their respective names, total scores, and internal 
confidence values are presented in Supplementary Material Table S4. 

Supplementary Material 

Table S1: Functional Annotation and Domain Prediction of the Chi1 protein using 
InterPro 

Section Database ID/Annotation Domain/Region Identified 
Protein 
Region 

1. Domain 

InterPro IPR018392 LysM domain 3-48 

CDD/ 
PROSITE 

cd00118/ PS51782 LysM/ LysM domain profile 3-47 

SMART/ 
SUPERFAMILY 

SM00257/ 
SSF54106 

LysM_2/ LysM domain 4-48 

Pfam PF01476 LysM domain 5-47 

InterPro IPR018392 LysM domain 52-97 

CDD cd00118 LysM 54-96 
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PROSITE PS51782 LysM domain profile 52-96 

SMART SM00257 LysM_2 53-97 

Pfam/ 
SUPERFAMILY 

PF01476/ 
SSF54106 

LysM domain 54-97 

InterPro/ 
PROSITE 

IPR001223/ 
PS51910 

Glycoside hydrolase family 18, 
catalytic domain 

104-430 

Pfam PF00704 Glycosyl hydrolases family 18 177-410 

InterPro/ 
SMART 

IPR011583/ 
SM00636 

Chitinase II/ 2g34 104-412 

InterPro/CDD 
IPR041704, 
cd02874 

CFLE, GH18 catalytic domain/ 
GH18_CFLE_spore_hydrolase 

104-420 

2. Homologous 
superfamily 

InterPro/ 
CATH-Gene3D 

IPR029070/ 
G3DSA:3.10.50.10 

Chitinase insertion domain 
superfamily 

324-382 

InterPro/ 
CATH-Gene3D 

IPR036779/ 
G3DSA:3.10.350.10 

LysM domain superfamily 3-50 

InterPro/ 
CATH-Gene3D 

IPR036779/ 
G3DSA:3.10.350.10 

LysM domain superfamily 51-103 

InterPro IPR017853 
Glycoside hydrolase 
superfamily 

103-427 

SUPERFAMILY SSF51445 (Trans)glycosidases 130-324 

SUPERFAMILY SSF51445 (Trans)glycosidases 384-427 

3. Unintegrated 

CATH-Gene3D G3DSA:3.20.20.80 Glycosidases Model: 4s3jB02 
104-321, 
383-430 

PANTHER PTHR46066 
Chitinase domain-containing 
protein 1 family member 
Model: PTHR46066:SF2 

64-420 

4. Residues CDD cd02874  Active site 

108 (A), 138 
(F), 139 (S), 
180 (F), 215 
(H), 217 (D), 
219 (E), 281 
(M), 283 (Y), 
284 (D), 324 
(Y), and 407 

(W) 

Table S2: Functional Annotation and Domain Prediction of the Chi2 protein using 
InterPro 

Section Database ID/Annotation Domain/Region Identified Protein Region 

1. Domain 

InterPro/ 
PROSITE profiles 

IPR001919/ 
PS51173 

Carbohydrate-binding type-2 
domain/ CBM2 
(Carbohydrate-binding type-
2) domain profile 

572-674 

SMART SM00637 cbd_2 579-672 

InterPro/ 
PROSITE profiles 

IPR003961/ 
PS50853 

Fibronectin type III/ 
Fibronectin type-III domain 
profile 

484-576 

Pfam PF00041 Fibronectin type III domain 488-559 

CDD cd00063 FN3 485-567 

SMART SM00060 FN3_2 485-557 
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InterPro/ 
PROSITE profiles 

IPR001223/ 
PS51910 

Glycoside hydrolase family 
18, catalytic domain/ 
Glycosyl hydrolases family 
18 (GH18) domain profile 

39-476 

Pfam PF00704 
Glycosyl hydrolases family 
18 

40-450 

InterPro/ SMART 
IPR011583/ 
SM00636 

Chitinase II/ 2g34 39-450 

2. Homologous 
superfamily 

InterPro/ CATH-
Gene3D/ 
FUNFAM G3DSA 

IPR013783/ 
G3DSA:2.60.40.1
0/ 
2.60.40.10:FF:00
1114 

Immunoglobulin-like fold/ 
Immunoglobulins/ Chitinase 
A1 Model: 2.60.40.10-FF-
001114 

483-567 

InterPro/ 
SUPERFAMILY 

IPR008965/ 
SSF49384 

CBM2/CBM3, carbohydrate-
binding domain superfamily/ 
Carbohydrate-binding 
domain 

574-672 

InterPro/ CATH-
Gene3D/ 
FUNFAM G3DSA 

IPR029070/ 
G3DSA:3.10.50.1
0/ 
3.10.50.10:FF:00
0010 

Chitinase insertion domain 
superfamily/ Chitinase A1 
Model: 3.10.50.10-FF-
000010 

338-421 

SUPERFAMILY SSF54556 Chitinase insertion domain 339-421 

InterPro/ 
SUPERFAMILY 

IPR036116/ 
SSF49265 

Fibronectin type III 
superfamily/ Fibronectin type 
III 

481-561 

InterPro/ CATH-
Gene3D 

IPR012291/ 
G3DSA:2.60.40.2
90 

CBM2, carbohydrate-binding 
domain superfamily 

578-672 

InterPro IPR017853 
Glycoside hydrolase 
superfamily 

34-451 

SUPERFAMILY SSF51445 (Trans)glycosidases 34-339 

SUPERFAMILY SSF51445 (Trans)glycosidases 422-451 

3. Active site 
InterPro/ 
PROSITE 
patterns 

IPR001579/ 
PS01095 

Glycosyl hydrolases family 
18 (GH18) active site/ 
Glycosyl hydrolases family 
18 (GH18) active site 
signature 

201-209 

4. Unintegrated 

CATH-Gene3D 
G3DSA:3.20.20.8
0 

Glycosidases Model: 
1itxA01  

41-337, 422-
450 

PANTHER PTHR11177 
Chitinase Model: 
PTHR11177:SF317  

31-505 

CDD 
cd06548 
GH18_chitinase 
Model: cd06548 

GH18_chitinase 41-450 

5. Other 
Features 

PHOBIUS 
SIGNAL_PEPTID
E_H_REGION 

Hydrophobic region of a 
signal peptide 

6-21 

PHOBIUS/ 
SIGNALP_GRAM
_POSITIVE/ 
SIGNALP_EUK 

SIGNAL_PEPTID
E/ SignalP-TM/ 
SignalP-noTM 

Signal peptide region/ 
SignalP-TM/ SignalP-noTM 

1-32 
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FUNFAM G3DSA 
3.20.20.80:FF:00
0153 

Chitinase A1 Model: 
3.20.20.80-FF-000153  

41-348 

TMHMM TMhelix 

Region of a membrane-
bound protein predicted to 
be embedded in the 
membrane 

7-26 

PHOBIUS 
SIGNAL_PEPTID
E_N_REGION 

N-terminal region of a signal 
peptide 

1-5 

PHOBIUS 
SIGNAL_PEPTID
E_C_REGION 

C-terminal region of a signal 
peptide 

22-32 

PHOBIUS 
NON_CYTOPLA
SMIC_DOMAIN 

Region of a membrane-
bound protein predicted to 
be outside the membrane, in 
the extracellular region 

33-674 

6. Residues 

CDD cd00063  Cytokine receptor motif 

Residue: 556 
(N), 557 (K), 
559 (Q), 560 
(P) 

CDD cd00063 Interdomain contacts 
Residue: 485 
(P), 540 (P), 
555 (G) 

CDD cd06548 Active site 

Residue: 44 
(Y), 72 (F), 205 
(D), 207 (D), 
209 (E), 282 
(M), 284 (Y), 
285 (D), 339 
(Y), 445 (W) 

Table S3: Functional Annotation and Domain Prediction of the BcLPMO10B 
protein using InterPro 

Section Database ID/Annotation Domain/Region Identified Protein Region 

1. Domain InterPro/ Pfam 
IPR004302/ 
PF03067 

Cellulose/chitin-binding 
protein, N-terminal/ Lytic 
polysaccharide mono-
oxygenase, cellulose-
degrading 

35-198 

2. Homologous 
Superfamily 

InterPro/  
SUPERFAMILY 

IPR014756/ 
SSF81296 

Immunoglobulin E-set/ E 
set domains 

35-200 

3. Unintegrated PANTHER PTHR34823 
GLcNAc -binding protein A, 
Model: PTHR34823:SF1 

1-215 

 CDD cd21177 LPMO_AA10 35-199 

 CATH-Gene3D 
G3DSA:2.70.50
.50 

Model: 5wszA00 35-203 

4. Other 
Features 

PHOBIUS 
SIGNAL_PEPT
IDE_C_ 
REGION 

C-terminal region of a signal 
peptide 

27-34 

 

PHOBIUS/ 
SIGNALP_GRA
M_ 
POSITIVE 

SIGNAL_PEPT
IDE/  
SignalP-TM 

Signal peptide region/ 
SignalP-TM 

1-34 
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 PHOBIUS 
SIGNAL_PEPT
IDE_ 
N_REGION 

N-terminal region of a signal 
peptide 

1-11 

 PHOBIUS 
NON_CYTOPL
ASMIC_ 
DOMAIN 

Region of a membrane-
bound protein predicted to 
be outside the membrane, 
in the extracellular region 

35-221 

 FUNFAM G3DSA 
2.70.50.50:FF:
000001 

Chitin-binding protein, 
Model: 2.70.50.50-FF-
000001 

35-201 

 PHOBIUS 
SIGNAL_PEPT
IDE_H_ 
REGION 

Hydrophobic region of a 
signal peptide 

12-26 

 TMHMM TMhelix 

Region of a membrane-
bound protein predicted to 
be embedded in the 
membrane 

12-29 

Table S4: Gene Ontology (GO) annotations for molecular function, biological 
process, and cellular components of Chi1, Chi2, and BcLPMO10B proteins 

Proteins GO ID 
Molecular 
Function 

Biological 
Process 

Cellular 
Component 

Total 
Score 

Internal 
Confidence 

Chi1 GO:0004568 
Chitinase 
Activity 

- - 4858.34 0.362861 

 GO:0004553 
Hydrolase 
Activity (O-
glycosyl) 

- - 3001.14 0.729386 

 GO:0016787 
Hydrolase 
Activity 

- - 1428.11 0.948207 

 GO:0016798 
Hydrolase 
Activity 
(Glycosyl) 

- - 8.06718 0.749436 

 GO:0006032 - 
Chitin 
Catabolic 
Process 

- 15738.2 0.440835 

 GO:0005975 - 
Carbohydrat
e Metabolic 
Process 

- 8601.19 0.444233 

 GO:0008152 - 
Metabolic 
Process 

- 46.8849 0.939180 

 GO:0016020 - - Membrane 65.3916 0.275806 

 GO:0016021 - - 

Integral 
Component 
of 
Membrane 

45.3957 0.082190 

Chi2 GO:0030247 
Polysacchari
de Binding 

- - 2152.86 0.157708 

 GO:0030246 
Carbohydrat
e-Binding 

- - 1617.13 0.315633 

 GO:0004568 
Chitinase 
Activity 

- - 1444.75 0.158592 
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 GO:0016787 
Hydrolase 
Activity 

- - 1247.83 0.651293 

 GO:0004553 
Hydrolase 
Activity (O-
glycosyl) 

- - 916.097 0.324551 

 GO:0016798 
Hydrolase 
Activity 
(Glycosyl) 

- - 824.976 0.484358 

 GO:0006032 - 
Chitin 
Catabolic 
Process 

- 9766.03 0.272583 

 GO:0005975 - 
Carbohydrat
e Metabolic 
Process 

- 5256.27 0.285015 

 GO:0008152 - 
Metabolic 
Process 

- 537.789 0.862511 

 GO:0016021 - - 

Integral 
Component 
of 
Membrane 

82.9439 0.098301 

 GO:0016020 - - Membrane 61.5155 0.311784 

 GO:0005618 - - Cell Wall 5.48319 0.038457 

BcLPM
O10B 

GO:0030246 
Carbohydrat
e-Binding 

- - 2795.65 0.4431 

 GO:0004553 
Hydrolase 
Activity 

- - 2059.3 0.4553 

 GO:0016787 
Hydrolase 
Activity 

- - 36.3418 0.4968 

 GO:0016740 
Transferase 
Activity 

- - 33.5986 0.0208 

 GO:0004568 
Chitinase 
Activity 

- - 11.5253 0.0197 

 GO:0016798 
Hydrolase 
Activity 

- - 6.4162 0.4750 

 GO:0030246 - 
Carbohydrat
e Metabolic 
Process 

- 5223.38 0.8652 

 GO:0004553 - 
Metabolic 
Process 

- 39.107 0.9829 

 GO:0030246 - - 
Extracellula
r Region 

4313.47 0.7265 

 GO:0016021 - - 

Integral 
Component 
of 
Membrane 

208.224 0.1296 

 GO:0016020 - - Membrane 144.748 0.2591 
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Figure 1: The structural characterization of Chi1 (a), Chi2 (b), and BcLPMO10B (c) 
proteins in B. cereus, highlighting domains with their respective locations and 

sequences 

Table 2: Utilizing Argot2 for the Functional Annotation of Chi1, Chi2, and 
BcLPMO10B Proteins 

GO Chi1 Chi2 BcLPMO10B 

Molecular 
Function 

Chitinase, and 
hydrolase activity (O-
glycosyl) 

Polysaccharide binding, 
chitinase, and hydrolase 
activity (O-glycosyl) 

Carbohydrate-binding, 
chitinase, hydrolase, 
and Ttransferase activity 

Biological 
Process 

Chitin catabolic, and 
carbohydrate metabolic 
Process 

Chitin catabolic, and 
carbohydrate metabolic 
Process 

Carbohydrate Metabolic 
Process 

Cellular 
Component 

Integral component of 
membrane 

Integral component of 
membrane and cell wall 

Extracellular region and 
integral component of 
membrane 

Phylogenetic Analysis  

A phylogenetic tree helps characterize bacterial proteins by revealing their evolutionary 
origin, function, and relationships among different species. It shows how a protein has 
evolved, its connections to other proteins, and its distribution across bacterial groups, 
aiding in inferring its function based on similarities or dissimilarities with known proteins, 
such as involvement in metabolic pathways, cellular processes, or virulence factors 
(Gabaldón 2005; Zardoya 2005).  

The ancestral lineage of the Chi1 protein was elucidated through the application of the 
MLM, employing the Le Gascuel 2008 model (Le and Gascuel 2008), which was chosen 
based on its minimal BIC value of 57712.8. The construction of the phylogenetic tree for 
the Chi1 protein involved the utilization of respective protein sequences, yielding the 
highest log likelihood of -30537.63 (Figure 2). The resultant phylogenetic tree of the Chi1 
protein exhibited a tripartite division into distinct clusters designated as cluster I, cluster 
II, and cluster III. The branches of the phylogenetic tree were supported by bootstrap 
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values, indicating the robustness of the clustering of associated taxa. The tree was 
depicted to scale, with branch lengths representing the number of substitutions per site. 
The analysis incorporated a total of 102 amino acid sequences, spanning 423 positions 
in the final dataset. Notably, the Chi1 protein demonstrated a close phylogenetic 
association with the Bacillus genus, particularly highlighting a distinct relationship with 
EAO55006 and CJD61848. This close clustering with specific members within the 
Bacillus lineage, as highlighted in yellow in Figure 2, underscores the unique evolutionary 
trajectory of Chi1, setting it apart from other members within the same lineage. 

 

Figure 2: The construction of a phylogenetic tree elucidating the evolutionary 
relationships among Chi1 protein and its homologs employed rigorous 

methodology. Utilizing the bootstrap method with 1000 replications, we applied 
the p-distance as the substitutional model, specifically designating amino acids 
as the substitution type, while ensuring uniform rates and patterns. Retrieval of 
homologous Chi1 protein sequences from related bacteria for phylogenetic tree 
reconstruction was conducted via BLASTp from the experimental clustered nr 

database. Notably, our protein sequence exhibited a close clustering with 
Bacillus genus, indicating a distinct relationship with EAO55006 and CJD61848, 

distinguishing it from other members within the same lineage 

The evolutionary lineage of Chi2 protein was elucidated using the MLM with the Whelan 
and Goldman model (Whelan and Goldman 2001), chosen for its minimal BIC value of 
7156.36. The Chi2 protein's family tree was built using its protein sequences, resulting in 
the highest log likelihood of -3529.95 (Figure 3). The resulting phylogenetic tree, based 
on 28 amino acid sequences, revealed four distinct clusters (I-IV), supported by bootstrap 
values. Chi2 exhibited a close phylogenetic association with B. thuringiensis, highlighting 
its unique evolutionary path within the Bacillus lineage. 
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Figure 3: Phylogenetic analysis depicting the evolutionary relationships of Chi2 
protein and its homologs. The tree was constructed using the bootstrap method 
with 1000 replications, employing the p-distance as the substitutional model with 
amino acids as the substitution type. Homologous Chi2 protein sequences from 
related bacteria were retrieved through BLASTp from the experimental clustered 

nr database. Notably, our protein sequence clustered closely with B. 
thuringiensis, indicating a distinctive relationship within the same lineage 

The evolutionary history of the BcLPMO10B protein was discerned employing the MLM 
with the Whelan and Goldman model (Whelan and Goldman 2001), selected for its 
minimized BIC value of 3402.7. Phylogenetic tree construction involved the use of 
corresponding protein sequences, yielding the highest log likelihood of -1710.54 (Figure 
4). The resulting phylogenetic tree displayed a trisection into clusters—cluster I and 
cluster II—supported by robust bootstrap values, depicting the stability of taxonomic 
clustering. The tree, drawn to scale, represented substitutions per site along branch 
lengths. The analysis encompassed 10 amino acid sequences, spanning 134 positions. 
Notably, the BcLPMO10B protein exhibited a proximate clustering with B. cereus, 
specifically with TK187278 and PFJ17621, followed by B. gaemokensis. This distinct 
relationship within the Bacillus lineage, highlighted in yellow in Figure 4, underscores the 
unique evolutionary trajectory of BcLPMO10B compared to other members within the 
same lineage. 
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Figure 4: Phylogenetic analysis illustrating the evolutionary relationships of 
BcLPMO10B protein and its homologs. The tree was constructed using the 
bootstrap method with 1000 replications, employing the p-distance as the 

substitutional model with amino acids as the substitution type. Homologous 
BcLPMO10B protein sequences from related bacteria were obtained via BLASTp 

from the experimental clustered nr database. Notably, our protein sequence 
exhibited a close clustering with B. cereus, specifically TK187278 and PFJ17621, 
followed by B. gaemokensis, indicating a distinctive relationship within the same 

lineage 

Table S5: Secondary structure parameters prediction of Chi1, Chi2, and 
BcLPMO10B proteins 

Secondary structure parameters Chi1 Chi2 BcLPMO10B 

Alpha helix 33.95% 20.62% 19.00% 

310 helix 0.00% 0.00% 0.00% 

Pi helix 0.00% 0.00% 0.00% 

Beta bridge 0.00% 0.00% 0.00% 

Extended strand 23.26% 20.03% 19.91% 

Beta turn 9.07% 6.68% 5.88% 

Bend region 0.00% 0.00% 0.00% 

Random coil 33.72% 52.67% 55.20% 

Ambiguous states 0.00% 0.00% 0.00% 

Other states 0.00% 0.00% 0.00% 
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Figure S1: Sequence plot of secondary structure prediction (a) Chi1, (b) Chi2 and 
(c) BcLPMO10B proteins by PSIPRED 

The SOPMA server was employed to predict the secondary structures of the Chi1, Chi2, 
and BcLPMO10B proteins. In Supplementary Material Table S5, you can find the 
predicted values for various parameters essential in determining the secondary structures 
of these proteins. To provide a visual representation of these secondary structures, 
Supplementary Material Figure S1 was created using PSIPRED. 

Homology Modeling 

In the comparative analysis of protein structures, our investigation focused on three 
distinct proteins: Chi1, Chi2, and BcLPMO10B. The Swiss models of these proteins were 
aligned with their respective templates, providing valuable insights into sequence identity, 
similarity, and structural features. For the Chi1 protein, the pairwise sequence alignment 
with the sequence of 4S3J template unveiled a remarkable 97.2% sequence identity, 
98.6% sequence similarity, and minimal gaps (0.7%), yielding a substantial alignment 
score of 2202 (Figure 5a). Further examination of the 3D structure revealed a high degree 
of conservation, with a sequence identity of 98.14% and a sequence similarity of 61% in 
comparison to the 3D structure of 4S3J template.  
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The superimposed 3D structures of Chi1 protein and its template (TM score = 0.99), as 
illustrated in Figures 5b-c, highlight the structural congruence.Moving to the Chi2 protein, 
the pairwise sequence alignment with the sequence of 6BT9 template displayed a 
sequence identity of 92.1%, a sequence similarity of 92.7%, and a modest gap 
percentage of 6.3%, resulting in an alignment score of 3475 (Figure 6a). Concurrently, 
the 3D structure comparison with the 6BT9 template demonstrated a substantial 
sequence identity of 99.38% and a sequence similarity of 63%. Figures 6b-c visually 
depict the superimposed 3D structures of Chi2 protein and its template (TM score = 0.65). 
In the case of BcLPMO10B protein, the pairwise sequence alignment with the 5WSZ 
template indicated a sequence identity of 76.5%, a sequence similarity of 76.5%, and a 
notable gap content of 23.5%, with an alignment score of 931 (Figure 7a). The 3D 
structural comparison with the 5WSZ template showcased a striking sequence identity of 
100% and a sequence similarity of 63%. Figures 7b-c provide a visual representation of 
the superimposed 3D structures of BcLPMO10B protein and its template (TM score = 
0.15). 

 

Figure 5: Representation of the Swiss model for the Chi1 protein from B. cereus: 
(a) Pairwise sequence alignment illustrating the comparison of Chi1 sequence 

with the template (PDB: 4S3J); (b, c) Superimposed 3D structures depicting Chi1 
(in green) aligned with its template (in grey) 
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Figure 6: Depiction of the Swiss model for the Chi2 protein from B. cereus: (a) 
Pairwise sequence alignment showcasing the comparison between the Chi2 
sequence and the template (PDB: 6BT9); (b, c) Superimposed 3D structures 

illustrating the alignment of Chi2 (in green) with its template (in grey) 
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Figure 7: Illustration of the Swiss model for the BcLPMO10B protein from B. 
cereus: (a) Pairwise sequence alignment presenting the comparison of the 

BcLPMO10B sequence with the template (PDB: 5WSZ); (b, c) Superimposed 3D 
structures providing a visual representation of the alignment of BcLPMO10B (in 

green) with its template (in grey) 

The 3D structural predictions for Chi1, Chi2, and BcLPMO10B proteins were conducted 
using the I-TASSER online server and the ROBETTA Baker server, as depicted in Figure 
8. I-TASSER models were generated based on C-score, estimated TM-Score, and 
estimated RMSD, with the outcomes for each model presented in Figure 8. Concurrently, 
the ROBETTA Baker server employed RoseTTAFold for predicting the 3D structures of 
Chi1, Chi2, and BcLPMO10B proteins, with confidence values displayed in Figure 8. 
Additionally, the AlphaFold-predicted structures for Chi1, Chi2, and BcLPMO10B were 
obtained from UniProt and included in Figure 8. 

To assess the reliability of the predicted structures, comprehensive structure validation 
was performed on all models generated by the Swiss-Model, I-TASSER server, 
ROBETTA Baker server, and AlphaFold. This rigorous validation process aimed to 
identify the most accurate and well-supported 3D structures among the predictions for 
Chi1, Chi2, and BcLPMO10B proteins. The results of this structure validation process 
contribute valuable insights into the quality and reliability of the predicted protein 
structures. 
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Figure 8: The 3D structure predictions for Chi1, Chi2, and BcLPMO10B proteins 
from I-TASSER and ROBETTA Baker servers, presenting I-TASSER models' C-

score, estimated TM-Score, and RMSD, ROBETTA Baker's RoseTTAFold 
predictions with confidence values, and AlphaFold-predicted structures obtained 

from UniProt 

3D Structure Validation of Modeled Proteins 

The structural integrity of the 3D models of Chi1, Chi2, and BcLPMO10B proteins 
generated by SwissModel, I-TASSER, and ROBETTA Baker Laboratory, and AlphaFold 
from Uniprot underwent thorough validation using multiple criteria, including the 
Ramachandran plot, MolProbity, ERRAT, Verify3D, QMEAN score, and Z-score. The 
Ramachandran plots (Figure 9 and Table 3) analysis reveal distinctive patterns in the 
stereochemical quality of protein structures predicted for Chi1, Chi2, and BcLPMO10B 
across diverse modeling servers—Swiss Model, I-TASSER, RobettaFold, and AlphaFold. 
For Chi1, Chi2, and BcLPMO10B, both Swiss Model and AlphaFold consistently yield 
models with significantly high percentages of residues in the most favored region, 
demonstrating strong agreement with favorable torsional angles. 
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While I-TASSER and RobettaFold maintain acceptable predictions, they exhibit slightly lower accuracy in 
capturing preferred torsional angles across all three proteins. The distribution of residues in additionally allowed, 
generously allowed, and disallowed regions further refines the assessment, emphasizing the nuanced variations 
in prediction quality among the modeling servers. The consistent trend of higher accuracy in Swiss Model and 
AlphaFold models suggests their reliability in generating protein structures with favorable stereochemical 
characteristics. 

Table 3: Ramachandran plot statistics of Chi1, Chi2, and BcLPMO10B proteins predicted by different 
servers 

 Chi1 Chi2 BcLPMO10B 

Ramachandran plot parameters 
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Residues in the most favored region (%) 94.1 86.90 93.1 93.1 91.8 79.5 87.3 87.5 92.7 63.9 90.7 75.4 

Residues additionally allowed region (%) 5.9 10.9 6.1 6.9 8 17.4 11.3 11 7.3 28.4 8.7 20.2 

Residues generously allowed region (%) 0 1.6 0.5 0 0.2 1.7 0.9 0.5 0 4.9 0 3.8 

Residues in the disallowed region (%) 0 0.5 0.3 0 0 1.4 0.5 1 0 2.7 0.5 0.5 

Total number of non-glycine and non-proline 
residues (%) 

100 100 100 100 100 100 100 100 100 100 100 100 

Numbers of end residues (Excluding Glycine  
and Proline) 

1 1 1 1 3 2 2 2 3 2 2 2 

Numbers of Glycine residues 28 28 28 28 62 62 62 62 18 23 23 23 

Numbers of Proline residues 26 26 26 26 32 35 35 35 12 13 13 13 

Total number of residues 429 430 430 430 636 674 674 674 170 221 221 221 
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Figure 9: Ramachandran plots serve as a validation tool for the 3D modeled 
structures of Chi1, Chi2, and BcLPMO10B proteins generated by diverse 

computational servers. The plots visually represent the 3D structures of each 
protein as predicted by four different servers: (a, b, c) Swiss Model, (d, e, f) I-

TASSER, (g, h, i) RobettaFold, and (j, k, l) AlphaFold. The X-axis (Phi) and Y-axis 
(Psi) depict the backbone conformation angles of amino acid residues, providing 
insights into the stereochemical quality and torsional angle distributions within 

the predicted protein structures 
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The comparative validation of 3D structures for Chi1, Chi2, and BcLPMO10B proteins, 
generated by Swiss Model, I-TASSER, RobettaFold, and AlphaFold from Uniprot, reveals 
detailed insights into the accuracy and reliability of structural prediction methods (Table 
4). Swiss Model consistently delivers high ERRAT scores, indicative of favorable model 
geometry, across all proteins. AlphaFold exhibits reliable structural predictions but 
demonstrates a lower Z-Score for Chi1. I-TASSER presents acceptable ERRAT scores 
but shows a slightly lower Z-Score for both Chi2 and BcLPMO10B. RobettaFold, while 
promising, lacks Z-Score calculations, limiting a comprehensive evaluation. Verify3D 
scores consistently indicate favorable 3D-1D profile compatibility, and QMEANDisCo 
Global scores provide insights into the models' reliability. This comparative analysis 
underscores the necessity of considering multiple validation metrics for a thorough 
assessment of structural prediction methods, highlighting Swiss Model's consistent 
performance and the varying degrees of success observed with AlphaFold and I-
TASSER. Further evaluation of RobettaFold is warranted to ascertain its reliability in the 
absence of Z-Score calculations. 

Table 4: Comparative validation of 3D structures of Chi1, Chi2, and BcLPMO10B 
proteins generated by Swiss Model, I-TASSER, and ROBETTA Baker Laboratory, 

and AlphaFold from Uniprot 

Protein Servers ERRAT Verify3D QMEANDisCo Global Z-Score 

Chi1 Swiss Model 94.5238 80.65% 0.94 ± 0.05 -10.61 

 I-TASSER 91.1905 84.65% 0.92 ± 0.05 -10.94 

 RobettaFold 95.4976 85.12% 0.87 ± 0.05 Not Calculated 

 AlphaFold 93.5867 82.09% 0.93 ± 0.05 -11.18 

Chi2 Swiss Model 94.7195 97.95% 0.95 ± 0.05 -10.51 

 I-TASSER 87.8378 91.54% 0.87 ± 0.05 -9.23 

 RobettaFold 92.1922 91.54% 0.84 ± 0.05 Not Calculated 

 AlphaFold 94.4 92.58% 0.90 ± 0.05 -9.6 

BcLPMO10B Swiss Model 95 95.27% 0.96 ± 0.07 -6.23 

 I-TASSER 81.2207 77.83% 0.65 ± 0.06 -4.54 

 RobettaFold 96.2264 66.97% 0.79 ± 0.06 Not Calculated 

 AlphaFold 88.1356 69.68% 0.74 ± 0.06 -4.87 

Based on the validation by Ramachandran plot, ERRAT, Verify3D, QMEAN score, and 
Z-score, Swiss-Models of 3D structures of Chi1, Chi2, and BcLPMO10B proteins were 
selected for further validation with MolProbity and computational analysis. With the 
MolProbity, the structural assessment of Swiss Models of Chi1, Chi2, and BcLPMO10B 
proteins, as represented in the table 5, provides a comprehensive overview of various 
quality metrics, including clash scores, protein geometry, Ramachandran outliers, 
MolProbity scores, Cβ deviations, peptide omegas, and low-resolution criteria. Notably, 
all three proteins exhibit low all-atom clash scores, suggesting minimal steric hindrance. 
In terms of protein geometry, Chi1 and Chi2 meet the goals for favored rotamers and 
Ramachandran favored regions, but BcLPMO10B falls slightly below the target for 
Ramachandran favored. The Rama distribution Z-score, indicating the distribution of 
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Ramachandran outliers, meets the set goal for all three proteins. MolProbity scores, which 
evaluate overall structure quality, are within acceptable percentiles. The analysis of Cβ 
deviations, bad bonds, and bad angles further underscores the high-quality structural 
predictions for all three proteins. Examination of peptide omegas reveals relatively low 
percentages of cis Prolines, with BcLPMO10B showing a higher percentage. Low-
resolution criteria, including CaBLAM outliers and CA Geometry outliers, are generally 
within acceptable limits, though Chi2 slightly exceeds the goal for CA Geometry outliers. 
Overall, the structural evaluation indicates robust predictions for Chi1 and Chi2, with 
BcLPMO10B exhibiting slightly more deviations in certain criteria. 

Table 5: Structural Evaluation Metrics using MolProbity for Chi1, Chi2, and 
BcLPMO10B Proteins Modeled by Swiss Model 

  Chi1 Chi2 BcLPMO10B Expected Range 

All-Atom 
Clashscore, all 

atoms: 
0.29 0.31 0 

99th percentile* 
(N=1784, all 
resolutions) 

Protein 
Geometry 

Poor rotamers 1.34% 0.56% 0.00% Goal: <0.3% 

 Favored rotamers 97.31% 96.24% 96.45% Goal: >98% 

 
Ramachandran 
outliers 

0.23% 0.00% 0.00% Goal: <0.05% 

 
Ramachandran 
favored 

97.66% 96.84% 95.81% Goal: >98% 

- 
Rama distribution Z-
score 

0.58 ± 0.40 -0.16 ± 0.30 -0.23 ± 0.64 
Goal: abs(Z 
score) < 2 

 MolProbity score 0.78 0.81 0.79 
100th percentile 
(N=27675, 0Å - 
99Å) 

 
Cβ deviations 
>0.25Å 

1.25% 0.70% 0.66% Goal: 0 

 Bad bonds: 0.00% 0.02% 0.00% Goal: 0% 

 Bad angles: 0.42% 0.32% 0.59% Goal: <0.1% 

Peptide 
Omegas 

Cis Prolines: 7.69% 0.00% 16.67% 
Expected: ≤1 per 
chain, or ≤5% 

 Cis nonProlines: 0.50% 0.50%  Goal: <0.05% 

Low-
resolution 
Criteria 

CaBLAM outliers 1.90% 2.40% 1.20% Goal: <1.0% 

 
CA Geometry 
outliers 

0.71% 0.79% 1.21% Goal: <0.5% 

Where green color represents good results, yellow represents caution, and red shows 
warning 
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Active Site Prediction 

The identification of binding pockets within the Swiss-modeled Chi1, Chi2, and 
BcLPMO10B proteins was conducted using the CASTp 3.0 online server. Table 6 offers 
a concise overview of the predicted binding pockets for these proteins. Notably, Chi1 

displayed a promising binding pocket characterized by a surface area of 845.103 Å2 and 
a surface volume of 1076.248 Å3. Likewise, Chi2 exhibited an active site pocket with a 
surface area of 2014.126 Å2 and a surface volume of 2591.475 Å3. Similarly, the 

BcLPMO10B proteins featured an active site with a surface area of 20.129 Å2 and a 
surface volume of 4.496 Å3. 

Table 6: Active site prediction of the modeled 3D structure of Chi1, Chi2, and 
BcLPMO10B proteins using the CastP server 

Sr. 

No. 
Protein Structure 

Surface 

Area (Å2) 

Surface 

Volume (Å3) 
Active Site Amino Acids 

1 Chi1 

  

845.1 1076.2 

TYR109, LEU110, GLN111, PRO112, 

SER113, THR114, LYS118, SER120, 

LEU121, ALA124, PHE138, ILE175, 

GLY178, ASN179, PHE180, ALA182, 

ASP217, GLU219, SER220, VAL221, 

ALA222, PRO223, THR249, VAL251, 

PRO252, LYS253, THR254, GLN258, 

GLY260, LYS261, PHE262, PHE263, 

GLU264, ALA265, HIS266, VAL279, 

MET281, TYR283, ASP284, TRP285, 

TRP287, GLN288, PRO300, VAL304, 

GLY320, TYR324, PHE326, LYS340, 

ALA341, ILE342, SER343, ALA346, 

SER405, TYR406, TRP407, LYS408, 

ILE409, GLY410, LEU411, PRO412 

2 Chi2 

  

2014.1 2591.5 

PRO104, LEU105, GLN106, LYS108, 

VAL110, THR114, LEU115, VAL116, 

LEU117, TYR128, SER131, GLY132, 

THR133, ASP137, TYR141, ALA142, 

ARG143, CYS144, GLY145, PHE147, 

GLY148, GLU149, LEU150, LYS151, 

ARG152, LYS154, ALA155, THR162, 

SER191, ALA194, PHE195, LEU196, 

ARG197, ARG197, ALA198, TYR199, 

GLY200, PHE201, ASP202, ALA245, 

GLU246, ASP247, LYS249, TYR251, 

GLU483, PRO484, THR486, ASN487, 

VAL488, LYS489, ASN490, ILE491, 

VAL492, VAL493, THR494, ASN495, 

LYS496, THR506, ALA507, SER508, 

THR509, ASP510, ASN511, VAL512, 

GLY513, VAL514, THR515, GLU516, 

TYR517, THR529, THR530, ASN531, 

ASN541, GLU543, GLN559, PRO560, 

THR561, ALA562, LEU563, THR564, 

VAL565, LYS566, THR567, ASP568, 
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GLU569, ALA570, THR572, THR573, 

PRO574, PRO575, ASP576, GLY 577, 

ASN578, GLY579, THR580, ALA581, 

THR582, PHE583, SER584, VAL585, 

THR586, SER587, ASN588, TRP589, 

GLY590, GLY592, SER596, ILE597, 

ILE598, ASP615, TYR616, SER617, 

GLY661, ASN662, PRO663, ALA664, 

GLU665, LEU666, LEU667, ASN668, 

THR669  

3 
BcLPM 

O10B  

 

20.1 4.5 
SER43, ARG44, SER45, VAL66, ALA83, 

LEU91, TYR193, GLN194, VAL195 

Molecular Docking 

Figure 10 illustrates the 3D and 2D structures resulting from the AutoDock Vina docking 
of Chi1/Chi2 and BcLPMO10B proteins with GLcNAc and 2, 6-dimethoxyphenol, 
respectively. These visual representations provide a comprehensive view of the 
interactions between the proteins and their respective ligands.  

For the Chi1 protein and GLcNAc, the docking analysis revealed a binding affinity of -5.2 
kcal/mol and a drug score of 0.52. Key amino acids involved in this interaction include 
Phe138, Glu219, Thr249, Tyr283, and Trp407 (refer to Table 7 and Figures 10c and d).  

Similarly, the docking of Chi2 protein with GLcNAc exhibited a binding affinity of -5.2 and 
a drug score of 0.83, involving critical amino acids such as Ile491, Val493, Phe583, 
Ala664, Glu665, and Leu666 (see Table 7 and Figures 10g and h). Finally, the docking 
of BcLPMO10B protein with 2,6-dimethoxyphenol demonstrated a binding affinity of -3.9 
and a drug score of 0.57, with key interacting amino acids including His35, Glu62, Glu67, 
His87, and Phe88 (refer to Table 7 and Figures 10k and l). 
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Figure 10: Molecular docking outcomes for the interactions of Chi1/Chi2 and 
BcLPMO10B proteins with N-acetyl-D(+)-glucosamine and 2,6-dimethoxyphenol, 
respectively, are presented as Chi1 Protein Docking Results (a) Solvent ribbon 
size surface, (b) Active site, (c) 3D docking, and (d) 2D docking with ligand N-
acetyl-D(+)-glucosamine. Chi2 Protein Docking Results (e) Solvent ribbon size 
surface, (f) Active site, (g) 3D docking, and (h) 2D docking with ligand N-acetyl-
D(+)-glucosamine.  BcLPMO10B Protein Docking Results (i) Solvent ribbon size 

surface, (j) Active site, (k) 3D docking, and (l) 2D docking with ligand 2,6-
dimethoxyphenol 
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Table 7: Systematic examination of molecular docking outcomes involving 
Chi1/Chi2 and BcLPMO10B proteins with N-Acetyl-D (+)-glucosamine and 2,6-

dimethoxyphenol, respectively 

Sr. 
No. 

Protein Ligand 
Binding  

affinity (kcal/ 
mol) 

Drug 
score 

Amino acid 
residues 

Number 
of bonds 

Types of 
bond 

interaction 

Bond 
length 

(A°) 

1 Chi1 
N-Acetyl-D(+)-
glucosamine  

-5.2 0.52 Phe138 1 
Hydrophobic 
Interaction 

3.8 

     Glu219 1 
Conventional 
hydrogen bond 

2.78 

     Thr249 1 
Conventional 
hydrogen bond 

2.7 

     Tyr283 1 
Conventional 
hydrogen bond 

2.87 

     Trp407 2 
Conventional 
hydrogen bond 

3.17 

       
Pi-donor 
hydrogen bond 

2.47 

2 Chi2 
N-Acetyl-D(+)-
glucosamine  

-5.2 0.83 Ile491 1 
Conventional 
hydrogen bond 

3.44 

     Val493 2 
Conventional 
hydrogen bond 

2.37 

       
Conventional 
hydrogen bond 

3.2 

     Phe583 2 
Conventional 
hydrogen bond 

2.19 

       
Hydrophobic 
Interaction 

3.66 

     Ala664 1 
Conventional 
hydrogen bond 

3.15 

     Glu665 1 
Conventional 
hydrogen bond 

2.45 

     Leu666 1 
Conventional 
hydrogen bond 

1.9 

3 
BcLPM
O10B 

2, 6-Dimethoxy 
phenol 

-3.9 0.57 His35 1 Pi-Alkyl 5.07 

     Glu62 1 
Carbon 
hydrogen bond 

3.59 

     Glu67 2 
Conventional 
hydrogen bond 

2.17 

       
Carbon 
hydrogen bond 

3.58 

     His87 2 Pi-Pi T shaped 4.99 

       Pi-Alkyl 4.43 

     Phe88 2 
Hydrophobic 
Interaction 

3.64 

       
Hydrophobic 
Interaction 

3.77 

Molecular Dynamics Simulation 

In our present research, Molecular Dynamics Simulations (MDS) were carried out for 
significant molecular complexes, namely, the Chi1-GLcNAc complex, Chi2-GLcNAc, and 
BcLPMO10B-2,6-dimethoxyphenol (refer to Figures 11-14).  
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Upon meticulous examination of the simulation data, it was noted that the average Root 
Mean Square Deviation (RMSD) of the Chi1-GLcNAc complex was 2.2 Å. This value 
exhibited fluctuations within the acceptable range of 1–4 Å for a duration of up to 35 
nanoseconds within the specific binding pocket of Chi1 (see Figure 11a). Additionally, key 
protein-ligand interactions within this context involved hydrogen bonding with Glu219, 
Thr249, Tyr283, and Trp407 (refer to Figures 10c and d). Similarly, the average RMSD 
of the Chi2-GLcNAc complex was determined to be 3.9 Å, displaying fluctuations within 
the acceptable range of 1–4 Å. This complex remained stable, albeit to a lesser extent 
compared to the Chi1-GLcNAc complex, within the specific binding pocket of Chi2 (see 
Figure 11b). Predominant protein-ligand interactions in this case included hydrogen 
bonding with Ile491, Val493, Phe583, Ala664, Glu665, and Leu666 (as depicted in 
Figures 10g and h). Lastly, the average RMSD of the BcLPMO10B-2,6-dimethoxyphenol 
complex was identified as 1.37 Å, with fluctuations falling within the acceptable range of 
1–4 Å. Although more stable compared to the Chi1-GLcNAc and Chi2-GLcNAc 
complexes, this complex exhibited a slightly higher RMSD value within the specific 
binding pocket of Chi2 (as illustrated in Figure 11c). Notably, principal protein-ligand 
interactions in this instance were established through hydrogen bonding with Glu62 and 
Glu67 (as elucidated in Figures 10k and l). 

Root Mean Square Fluctuations (RMSF) play a pivotal role in characterizing localized 
variations within the protein structure. These fluctuations serve as valuable indicators for 
pinpointing specific residues contributing to structural changes within the complex. It is 
essential to highlight that reduced fluctuations typically correlate with heightened 
structural stability. Upon comparative scrutiny, Figure 12(c), illustrating the BcLPMO10B 
protein complexed with 2,6-dimethoxyphenol, displayed significantly lower fluctuations 
compared to Figure 12(a), representing the Chi1-GLcNAc complex. Additionally, both of 
these complexes exhibited diminished fluctuations when compared to Figure 12(b), 
depicting the Chi2 protein in the complex with GLcNAc. This observation underscores the 
superior stability of the BcLPMO10B-2,6-dimethoxyphenol complex in contrast to the 
Chi1-GLcNAc and Chi2-GLcNAc complexes. 

Analysis of the MD trajectories unveils that residues with elevated fluctuations are 
predominantly situated within loop regions or the N- and C-terminal regions of the protein 
structure, as depicted in Figure 13. This pattern highlights the dynamic nature of these 
specific protein segments. Furthermore, the stability of ligand binding to the protein is 
evident in the low Root Mean Square Fluctuation (RMSF) values observed for residues 
involved in the attachment of the ligand. These findings support the robustness of ligand-
protein interactions. 

In addition to RMSF, we closely monitored the distribution of secondary structure 
elements (SSE) throughout the simulation. The graphical representation in Figure 13 
illustrates the distribution of alpha-helices and beta-strands across the protein structures, 
with SSE plotted against the residue index. Concerning alpha-helix content, Chi1 
exhibited the highest proportion at 33.95%, followed by Chi2 at 20.62%, and BcLPMO10B 
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at 19.00%. Meanwhile, the extended strand conformation prevailed in Chi1, constituting 
23.26% of its secondary structure, followed closely by Chi2 at 20.03%, and BcLPMO10B 
at 19.91%. As for beta-turn structures, Chi1 accounted for 9.07%, Chi2 for 6.68%, and 
BcLPMO10B for 5.88%. Notably, there is a significant difference in the random coil 
conformation, with Chi1 displaying 33.72%, while Chi2 exhibited a substantially higher 
percentage of 52.67%, and BcLPMO10B recorded the highest at 55.20%. These distinct 
secondary structure parameters provide valuable insights into the structural 
characteristics of Chi1, Chi2, and BcLPMO10B, shedding light on their conformational 
preferences and potential functional roles within the context of this study. 

Figure 14(b) illustrates a greater number of hydrogen bonding interactions in the Chi2-
GLcNAc complex compared to the Chi1-GLcNAc complex, as depicted in Figure 14(a), 
and surpasses the hydrogen bonding interaction observed in the BcLPMO10B-2,6-
dimethoxyphenol complex, as shown in Figure 14(c). 

 

Figure 11: Changes in the trajectory analysis of the root mean square distance 
(RMSD) between C-alpha atoms of proteins and lead compounds were observed 
across time in (a) the Chi1-N-acetyl-D(+)-glucosamine complex, (b) Chi2 protein 

complexed with N-acetyl-D(+)-glucosamine, and (c) BcLPMO10B protein 
complexed with 2,6-dimethoxyphenol. In these analyses, the color pink signifies 

the RMSD values of the lead compound, while the color green represents the 
RMSD values of the protein target, both monitored over time 



Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/ 
Journal of Xi'an Shiyou University, Natural Sciences Edition 

ISSN: 1673-064X 
E-Publication: Online Open Access 

Vol: 67 Issue 02 | 2024 
DOI: 10.5281/zenodo.10686103 

Feb 2024 | 89 

 

Figure 12: RMSF plots of (a) Chi1-N-acetyl-D(+)-glucosamine complex, (b) Chi2 
protein complexed with N-acetyl-D(+)-glucosamine, (c) BcLPMO10B protein 

complexed with 2,6-dimethoxyphenol 

 

Figure 13: The spatial arrangement of protein secondary structure elements, 
specifically alpha helices (illustrated as red columns) and beta strands (depicted 
as blue columns), is observed in different scenarios throughout the simulation, 
including the (a) Chi1-N-acetyl-D(+)-glucosamine complex, the (b) Chi2-N-acetyl-

D(+)-glucosamine complex, and the (c) BcLPMO10B-2,6-dimethoxy phenol 
complex, all occurring during the course of the simulation  
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Figure 14: The contact heatmap throughout the simulation trajectory is depicted 
in the histogram for the Chi1-N-acetyl-D(+)-glucosamine complex (a), the Chi2-N-
acetyl-D(+)-glucosamine complex (b), and the BcLPMO10B-2,6-dimethoxy phenol 

complex (c) 
 
4. DISCUSSION 

Modern advancements require computational protein analysis for drug design, protein-
protein interactions, and structure prediction. Molecular docking and simulations, 
leveraging protein sequences and structures, facilitate drug discovery and predictions for 
uncharacterized proteins (Sen and Verma 2020). Computational simulations elucidate 
atom-level behavior, aiding in the prediction of protein expression, evolution, and 
structural trends. These studies, crucial for proteomics like vaccine development and 
disease understanding, present data in a simple, interpretable manner, supporting logical 
biological insights (Branco and Choupina 2021; Gangotia, Gupta, and Mani 2021; María 
Hernández-Domínguez et al. 2020). This study explored the evolutionary insights and 
action mechanisms of chitinolytic enzymes from B. cereus i.e., BcLPMO10B and 
chitinases using computational techniques.  

The phylogenetic analysis presented in Figures 2-4 affirms the close evolutionary 
association of B. cereus chitinase proteins with those of other Bacillus species and, 
specifically for Chi1, with Streptomyces. Our results align with previous studies 
suggesting the acquisition of chitinase proteins through horizontal gene transfer (HGT) 
from bacteria and fungi, enhancing genetic diversity and adaptability (Honda et al. 2016; 
Moshe et al. 2023; Vandhana et al. 2022). Notably, environments rich in chitin, such as 
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soil and marine ecosystems, may drive HGT dynamics. Comparative studies with Bacillus 
species and Streptomyces revealed similarities in chitinase genes, supporting the 
hypothesis that B. cereus acquired these genes via HGT, potentially conferring a 
competitive advantage for chitin resource utilization and adaptation to diverse habitats. 
Additional analyses, including comparisons with gram-positive bacteria like Clostridium 
and Lactobacillus, further indicate a complex evolutionary history for B. cereus chitinase 
genes, potentially involving gene duplication and mutation. While these findings 
underscore the intricate evolutionary mechanisms shaping the chitinase protein of B. 
cereus, further research is warranted to elucidate its precise ecological and pathogenic 
roles, necessitating a comprehensive understanding of its function and regulatory 
mechanisms (Andreou et al. 2018; Drewnowska et al. 2020; Dutta et al. 2021; Martínez-
Zavala et al. 2020; Moshe et al. 2023). 

For this detailed study of action of mechanism of enzymes, we firstly constructed the 3D 
structures of BcLPMO10B and chitinases (Chi1, and Chi2). In evaluating the comparative 
analysis of protein structures (Chi1, Chi2, and BcLPMO10B), alignment with Swiss 
Models, I-TASSER, ROBETTA Baker Laboratory, and AlphaFold from UniProt provided 
insights into sequence identity, similarity, and structural features (Figures 5-8). 3D 
structural predictions and comprehensive structure validation using multiple criteria, 
including the Ramachandran plot, MolProbity, ERRAT, Verify3D, QMEAN score 
(Waterhouse et al. 2018), and Z-score, were conducted. Notably, Swiss Models and 
AlphaFold consistently exhibited high accuracy in the Ramachandran plot, showcasing 
favorable torsional angles for Chi1, Chi2, and BcLPMO10B (as per standard requirement 
(Hollingsworth and Karplus 2010)). Swiss Model consistently delivered high ERRAT 
scores, indicative of favorable model geometry, while AlphaFold demonstrated reliable 
structural predictions, albeit with a lower Z-Score for Chi1. I-TASSER presented 
acceptable ERRAT scores but showed slightly lower Z-Scores for Chi2 and BcLPMO10B. 
The comparative analysis underscores the importance of considering multiple validation 
metrics, with Swiss Model consistently performing well. Further evaluation of RobettaFold 
is warranted. Subsequent validation with MolProbity confirmed robust predictions for Chi1 
and Chi2, with BcLPMO10B exhibiting slight deviations in specific criteria, providing a 
comprehensive overview of structural quality metrics. 

The analysis of the Chi1 protein's structure and function using InterPro and Argot2 (Figure 
1 and Table 2) revealed the presence of a LysM domain, which was further supported by 
additional annotations from CDD/PROSITE, SMART/SUPERFAMILY, and Pfam. These 
annotations consistently identified the LysM domain, with an additional LysM domain 
identified at residues 52-97, emphasizing its presence within the Chi1 protein. 
Additionally, the InterPro analysis indicated the existence of a glycoside hydrolase family 
18 catalytic domain, suggesting Chi1's role as a glycoside hydrolase. The CDD analysis 
revealed specific active site residues (108, 138, 139, 180, 215, 217, 219, 281, 283, 284, 
324, and 407) within the protein, indicating their importance in catalytic activity. For Chi2, 
InterPro annotations identified a carbohydrate-binding type-2 domain, and a fibronectin 
type III domain was found from residues 484-576, supported by Pfam annotations. 
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InterPro also identified a glycoside hydrolase family 18 catalytic domain within Chi2, 
spanning residues 39-476, which was further confirmed by Pfam. The active site residues 
(44, 72, 205, 207, 209, 282, 284, 285, 339, and 445) detected through CDD analysis are 
crucial for Chi2's glycoside hydrolase activity. The BcLPMO10B protein exhibited a 
unique domain profile, with InterPro and Pfam identifying a cellulose/chitin-binding protein 
N-terminal domain from residues 35-198, and a homologous superfamily annotation 
pointing to immunoglobulin E-set domains within residues 35-200, potentially contributing 
to BcLPMO10B's interaction with polysaccharides like cellulose and chitin. 

Functional annotations using Argot2 for all three proteins provided insights into their 
molecular functions and biological processes, as summarized in Table 2. Both Chi1 and 
Chi2 exhibited a strong association with chitin catabolic processes, emphasizing their 
involvement in chitin degradation. Chi2 also demonstrated potential participation in cell 
wall-related processes. BcLPMO10B was implicated in carbohydrate binding and 
hydrolase activities, suggesting its role in the breakdown of carbohydrate substrates. The 
identified structural features and motifs in Chi1, Chi2, and BcLPMO10B offer valuable 
insights into their functions. The LysM domains in Chi1 and Chi2 likely facilitate their 
binding to chitin, a crucial component of fungal cell walls. Additionally, these enzymes 
feature glycoside hydrolase family 18 catalytic domains, essential for hydrolyzing 
glycosidic bonds in chitin and other carbohydrates. The presence of active site residues 
further supports their enzymatic activities. BcLPMO10B's N-terminal domain suggests its 
ability to bind cellulose and chitin, aligning with its role as a lytic polysaccharide mono-
oxygenase. Immunoglobulin E-set domains within BcLPMO10B may play a vital role in 
substrate recognition or binding. The carbohydrate-binding and hydrolase activities of this 
enzyme contribute to the degradation of carbohydrates. 

For validation of their predicted functions, we investigated their interactions with 2, 6-
dimethoxyphenol and GLcNAc as substrates for BcLPMO10B and chitinases, 
respectively. To reveal the action mechanism of BcLPMO10B and chitinases, docking 
studies were utilized to predict the ligand binding modes. Our research also included 
MDS. We examined the dynamics of BcLPMO10B and chitinases by simulating the 
temporal motion of individual atoms. To uncover the effect of structural alterations on 
these proteins' enzymatic function, we conducted this study. 

Exploration of the binding modes of GLcNAc and 2,6-dimethoxyphenol with Chi1 and 
Chi2 was conducted using AutoDock Vina, as illustrated in Figure 10. These 
investigations provided valuable insights into the catalytic mechanisms, substrate 
preferences, and binding affinities of these enzymes. Following docking, GLcNAc 
exhibited similar binding affinities with Chi1 and Chi2 proteins (-5.2 kcal/mol). However, 
the interaction of Chi1-GLcNAc involved key amino acids with three conventional 
hydrogen bonds and two additional bonds, while the Chi2-GLcNAc interaction featured 
critical amino acids with seven hydrogen bonds and one other bond, as outlined in Table 
7 and Figures 10c, d, g, and h.  



Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/ 
Journal of Xi'an Shiyou University, Natural Sciences Edition 

ISSN: 1673-064X 
E-Publication: Online Open Access 

Vol: 67 Issue 02 | 2024 
DOI: 10.5281/zenodo.10686103 

Feb 2024 | 93 

The predicted binding modes of substrates/ligands to Chi1/Chi2 and BcLPMO10B 
proteins offer insights into their enzymatic activities, revealing how these proteins interact 
with specific substrates and shedding light on their catalytic mechanisms. 

Molecular Dynamics Simulations (MDS) were subsequently conducted on the resulting 
molecular complexes (Chi1-GLcNAc, Chi2-GLcNAc, and BcLPMO10B-2,6-
dimethoxyphenol) obtained from docking. The temporal motion of individual atoms within 
these complexes was examined using Root Mean Square Deviation (RMSD) analysis 
(Figure 11). The Chi1-GLcNAc complex demonstrated stability within the binding pocket 
of Chi1, featuring prominent protein-ligand interactions involving hydrogen bonding with 
Glu219, Thr249, Tyr283, and Trp407.  

While the Chi2-GLcNAc complex showed slightly less stability than Chi1, it maintained 
stability within the binding pocket of Chi2. The BcLPMO10B-2,6-dimethoxyphenol 
complex exhibited the highest stability (Figure 11c). Analyzing the RMSDs of these 
complexes provided insight into their stability and specific protein-ligand interactions 
contributing to it. 

Root Mean Square Fluctuation (RMSF) calculations for individual residues within the 
protein structures were performed to understand the impact of structural changes on 
dynamics (Figure 11). 

Residues with high fluctuations were primarily found at the N- or C-terminal regions or 
within loop regions. A low RMSF value for residues involved in ligand attachment 
indicated a robust ligand-protein interaction, emphasizing the critical role of ligand binding 
in stabilizing specific protein segments. 

Secondary Structure Elements (SSE) were closely monitored throughout the simulation 
in addition to RMSD and RMSF analyses (Figure 12). The findings shed light on the 
functional roles of BcLPMO10B, Chi1, and Chi2 during catalysis, based on conformational 
changes during the process. BcLPMO10B exhibited the highest proportion of alpha 
helices (19.00%), followed by Chi2 (20.62%).  

Distinct conformational preferences among proteins based on their secondary structures 
were observed, including differences in extending strands, beta-turn structures, and 
random coil structures among the complexes. These variations may imply different 
catalytic mechanisms employed by these enzymes, providing insights into their structural 
characteristics and potential functional roles. 

Comparative analysis of the hydrogen bonding interactions revealed that Chi2-GLcNAc 
exhibited a greater degree of hydrogen bonding than Chi1-GLcNAc and BcLPMO10B-
2,6-dimethoxyphenol (Figure 13). As hydrogen bonding interactions are crucial in 
enzyme-substrate interactions, Chi2 may possess a more efficient catalytic mechanism. 
The hydrogen bonding interactions offer insights into the respective enzymatic functions 
of these complexes, reflecting differences in enzyme efficiencies and substrate binding 
affinities. 
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5. CONCLUSION 

Our study used computer methods to explore how certain enzymes in B. cereus, called 
BcLPMO10B and chitinases (Chi1 and Chi2), have evolved and work. These enzymes 
have close connections with other bacteria, suggesting they may have shared genes over 
time. We also created and validated 3D models of these enzymes, showing they are of 
high quality. By simulating their movements, we learned more about how they interact 
with specific substances. Additionally, we identified specific parts in Chi1, Chi2, and 
BcLPMO10B that help them break down carbohydrates. Our findings highlight the 
diversity in how these enzymes work. By studying their behaviors in detail, we gained 
insights into their stability and how they change shape during their activities. This study 
would lead to further experimental validation that may be done in relevant biological 
contexts to elucidate the potential applications of these enzymes in biotechnology and 
pharmaceutical research. 
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