A NOTE ON 1-COAXER LATTICES

C. NAG*

Department of Mathematics, Shahjalal University of Science and Technology, Sylhet, Bangladesh. *Corresponding Author Email: chandrani-mat@sust.edu

SYED MD OMAR FARUK

Department of Mathematics, Shahjalal University of Science and Technology, Sylhet, Bangladesh.

Abstract

This paper investigates coaxer ideals within 1-distributive lattices and introduces the concept of 1-coaxer lattices. The study explores characterizations of coaxer ideals and establishes foundational properties of 1-coaxer lattices. Through an analysis of pseudocomplemented 1-distributive lattices, it provides a structured understanding of coaxer ideals, minimal and maximal ideals, and their interrelations.

2010 Mathematics Subject Classification: 06A12, 06A99, 06B10.

Keywords and Phrases: Lattices, 1-Distributive Lattice, Pseudocomplemented Lattice, Ideal, Filter.

1. INTRODUCTION

The notion of coaxer ideals is introduced in [1] for distributive lattices. In this paper we study coaxer ideals in 1-distributive lattices. We also refer the reader to [2, 4] for 1-distributive lattices and 0-distributive lattices.

A lattice L with 1 is called 1-distributive if for any $a, b, c \in L, a \lor b = 1 = a \lor c$ implies $a \lor (b \land c) = 1$. The pentagonal lattice P_5 (see the diagram in Figure 1) is 1distributive but not distributive. Thus, not every 1-distributive lattice is a distributive lattice. The diamond lattice M_3 (see Figure 1) is not 1-distributive.

Figure 1: The pentagonal lattice and the diamond lattice

An element $a^* \in L$ is called the **psedocomplement** of $a \in L$ is the greatest element disjoint from a such that $x \leq a^*$ if and only if $x \wedge a = 0$.

A 1-distributive lattice L is called **pseudocomplemented** 1-distributive lattice if every element in L has a pseudocomplement. P_5 is pseudocomplemented 1-distributive lattice but M_3 is not a pseudocomplemented 1-distributive lattice(see Figure 1). The following well known identities (see [5, 6, 7]) are used throughout this paper.

- (1) $a \leq b$ implies $b^* \leq a^*$
- (2) $a \le a^{**}$
- (3) $a = a^{***}$
- (4) $(a \lor b)^* = a^* \land b^*$
- (5) $(a \wedge b)^{**} = a^{**} \wedge b^{**}$
- (6) $a \wedge (a \wedge b)^* = a \wedge b^*$

An element $a \in L$ is called **dense** if $a^* = 0$ and the set of all dense elements is denoted by D(L) and is a filter of L. For every $x \in L, x \vee x^* \in D(L)$, since $(x \vee x^*)^* = 0$.

The identity (6) is used rarely (see [6] for semilattices and see [4] for lattices). An ideal I of a lattice L is called a **proper ideal** if $I \neq L$.

An ideal M of L is called a **maximal ideal** of L if M is proper and if there is a proper ideal I of L such that $M \subseteq I$ then M = I. A **minimal ideal** I of L is a proper ideal which is not belonging to any other proper ideal, that is, if there is a proper ideal J such that $J \subseteq I$, then I = J. An ideal P of L is called a **prime ideal** if for any $a, b \in L$ such that $a \land b \in P$ implies $a \in P$ or $b \in P$. For the background of lattices, we refer the reader to [9, 10, 11].

2. Coaxer Ideals

M. S. Rao [1] gives the definition of coaxer ideals in a pseudocomplemented distributive lattice. In this section coaxer ideals is defined in a pseudocomplemented 1-distributive lattice. Also we give the notion of 1-coaxer lattices. We discuss various properties of coaxer ideals.

Let L be a pseudocomplemented 1-distributive lattice. A non-empty subset I of L is called an **ideal** if

- (i) $a \in L, b \in I$ with $a \leq b$ implies $a \in I$,
- (ii) $a, b \in I$ implies $a \lor b \in I$.

Let L be a pseudocomplemented 1-distributive lattice, for any $a \in L$ the **coaxer** of a is the set defined as

$$(a)^{\circ} = \{ x \in L \mid x^* \lor a = 1 \}.$$

Clearly $(0)^{\circ} = \{0\}$ and $(1)^{\circ} = L$.

Now we have an important result for this paper.

Theorem 2.1. Let L be a pseudocomplemented 1-distributive lattice. For any $a \in L$,

 $(a)^{\circ}$ is an ideal of L.

Proof. Since $0^* = 1$, so obviously $0 \in (a)^\circ$. Now let $x, y \in (a)^\circ$. This implies $x^* \vee a = 1$ and $y^* \vee a = 1$. Since L is 1-distributive, $a \vee (x^* \wedge y^*) = a \wedge (x \vee y)^* = 1$. So $x \vee y \in (a)^\circ$. Again let $x \in (a)^\circ$ and $r \in L$ with $r \leq x$. So $x^* \leq r^*$. This implies $1 = (x^* \vee a) \leq (r^* \vee a)$. So $(r^* \vee a) = 1$ and hence $r \in (a)^\circ$. This completes the proof.

This ideal $(a)^{\circ}$ for any $a \in L$ is called **coaxer ideal** of L. Rao [1] proved that $(a)^{\circ} \subseteq (a]$. But in our case, if we consider the P_5 (see Figure 1), we see that $(a)^{\circ} = (b] \notin (a]$.

Now we have some properties of coaxer ideals.

Theorem 2.2. Let L be a pseudocomplemented 1-distributive lattice. For any $a, b \in L$,

we have

(i) a ≤ b implies that (a)° ⊆ (b)°.
(ii) a ∨ b = 1 implies a* ∈ (b)°.
(iii) (a)° ⊆ (a**].
(iv) (a)° ∩ (b)° = (a ∧ b)°.
(v) (a)° = L if and only if a = 1.

Proof. (i) Let $a \leq b$ and let $x \in (a)^{\circ}$. So $x^* \vee a = 1$. Thus $1 = x^* \vee a \leq x^* \vee b$ implies $x^* \vee b = 1$ and hence $x \in (b)^{\circ}$.

(ii) Since $a \leq a^{**}$, we have $a \lor b = 1$ implies $a^{**} \lor b = 1$. So $a^* \in (b)^{\circ}$. (iii) Let $x \in (a)^{\circ}$. So $x^* \lor a = 1$. This implies that $x^{**} \land a^* = 0$ and so $x^{**} \leq a^{**}$. Thus $x \leq a^{**}$. Hence $(a)^{\circ} \subseteq (a^{**}]$.

(iv) Let $x \in (a)^{\circ} \cap (b)^{\circ}$. Thus $x \in (a)^{\circ}$ and $x \in (b)^{\circ}$. This implies $x^* \vee a = 1$ and $x^* \vee b = 1$. As L is 1-distributive lattice, we have $x^* \vee (a \wedge b) = 1$. So $x \in (a \wedge b)^{\circ}$.

For the converse part we have, $(a \wedge b) \leq a$ and $(a \wedge b) \leq b$ and so using property (i), we found that $(a \wedge b)^{\circ} \leq (a)^{\circ}$ and $(a \wedge b)^{\circ} \leq (a)^{\circ}$. So this completes the proof.

(v) If a = 1, then $(a)^{\circ} = (1)^{\circ} = L$. Conversely let $(a)^{\circ} = L$, then $1 \in (a)^{\circ}$. So $1^* \vee a = 1$ and this implies $a = a \vee 0 = a \vee 1^* = 1$. This completes the proof.

The following theorem is very important theorem which is proved for p-algebra where underlying lattice is 0-distributive lattice (see [3]). Here we give the proof of this theorem for 1-distributive lattice.

Lemma 2.3. Let L be a pseudocomplemented 1-distributive lattice and P be a prime ideal

of L. Then the following conditions are equivalent:

- (i) *P* is minimal;
- (ii) $x \in P$ implies $x^* \notin P$;
- (iii) $x \in P$ impllies $x^{**} \in P$;
- (iv) $P \cap D(L) = \phi$.

Proof. (i) \implies (ii). Let P be a minimal prime ideal and let $x^* \in P$ for some $x \in P$. Let $D = (L \setminus P) \lor [x)$. Then D is a filter and if $0 \in D$, we get $0 = y \land x$ for $y \notin P$. Thus we have $y \leq x^* \in P$, which is a contradiction. So $0 \notin D$ and thus $(0] \cap D = \phi$. Now since L is 1-distributive lattice and $(0] \cap D = \phi$ by Theorem 2.3 (see [2]), there exists a prime ideal Q such that $Q \cap D = \phi$. So we have $Q \subseteq P$ and $Q \neq P$ as $x \notin Q$. So this is contradiction to the fact that P is minimal.

(*ii*) \implies (*iii*). Let $x \in P$ and by (*ii*), $x^* \notin P$. Since $x^* \wedge x^{**} = 0$ and P is prime so $x^{**} \in P$.

(*iii*) \implies (*iv*). Let $x \in P \cap D(L)$. Then $x^* = 0$ and $x^{**} \in P$ implies that $x^{**} = 1 \in P$ which is a contradiction that P is proper ideal.

 $(iv) \implies (i)$. Let P is not minimal and let $Q \subset P$, where Q is a prime ideal. Let $x \in P \setminus Q$ and $x \wedge x^* = 0 \in Q$, we have $x^* \in Q \subset P$. As P is an ideal we have $x \vee x^* \in P$. As $x \vee x^* \in D(L)$ for every $x \in L$, we have $(x \vee x^*) \in P \cap D(L)$, which is a contradiction of (iv). Hence P is minimal.

Now we have the following theorem.

Theorem 2.4. Every proper coaxer ideal of a pseudocomplemented 1- distributive lattice L is contained in a minimal prime ideal.

Proof. Let *L* be a pseudocomplemented 1-distributive lattice and let $(a)^{\circ}$ be a proper coaxer ideal of *L* where $a \in L$. Let $(a)^{\circ} \cap D(L) \neq \phi$ and $d \in (a)^{\circ} \cap D(L)$. If $d \in (a)^{\circ} \cap D(L)$ then we have $d \in (a)^{\circ}$ and $d \in D(L)$. This implies $d^* \lor a = 1$ and $0 \lor a = 1$. Hence a = 1 and $c \circ n s e q u e n t l y (a)^{\circ} = L$

Which is a contradiction to the fact that $(a)^{\circ}$ is a proper coaxer ideal of L. So $(a)^{\circ} \cap D(L) = \phi$. Then by Theorem 2.3 (see [2]), there exists a prime ideal P such that $(a)^{\circ} \subseteq P$ and $P \cap D(L) = \phi$. Let $x \in P$. Then $x \lor x^* \in D(L)$ and $x \lor x^* \notin P$. Since P is a ideal

and $x \in P$, so $x^* \notin P$. Therefore P is minimal prime ideal (by Lemma 2.3) such that $(a)^{\circ} \subseteq P$.

Now let us discuss about a special type of ideal. If M is a maximal ideal of a pseudocomplemented 1-distributive lattice L, define

$$\pi(M) = \{ x \in L \mid x^* \notin M \}.$$

Theorem 2.5. Let L be a pseudocomplemented 1-distributive lattice and let M be a maximal ideal of L. Then $\pi(M)$ is an ideal of L such that $\pi(M) \subseteq M$.

Proof. Let M be a maximal ideal of a pseudocomplemented 1-distributive lattice L. Then M is maximal (see [4]). Since $0^* = 1 \notin M$ so $0 \in \pi(M)$. So $\pi(M)$ is non-empty. Let $x, y \in \pi(M)$. Thus $x^* \notin M$ and $y^* \notin M$. So

$$x^* \wedge y^* \notin M$$
 [since M is prime]
 $\Rightarrow (x \lor y)^* \notin M$
 $\Rightarrow (x \lor y) \in \pi(M).$

Again let $x \in \pi(M)$ and $y \in L$ with $y \leq x$. Thus $x^* \notin M$ and consequently $(x \land y)^* \notin M$, otherwise $x^* \in M$. So $x \land y = y \in \pi(M)$. Hence $\pi(M)$ is an ideal of L.

Now let $x \in \pi(M)$. So $x^* \notin M$ and since M is a prime ideal $x \wedge x^* = 0 \in M$ implies that $x \in M$. Hence $\pi(M) \subseteq M$.

Let L be a pseudocomplemented 1-distributive lattice and let M be a maximal ideal of L. let us denote the set of all maximal ideals by μ and let $\mu_a = \{M \in \mu \mid a \in M\}$. Now we have the theorem.

Theorem 2.6. Let L be a pseudocomplemented 1-distributive lattice and let M be a maximal ideal of L and let $a \in L$. Then $(a)^{\circ} = \bigcap_{M \in \mu^a} \pi(M)$.

Proof. Let L be a pseudocomplemented 1-distributive lattice and let $I_0 = \bigcap_{M \in \mu^a} \pi(M)$. Let $x \in (a)^\circ$ and let $M \in \mu_a$. Then $x^* \lor a = 1$. Now $a \in M$ and if $x^* \in M$ then $1 \in M$, which is a contradiction. So $x^* \notin M$. So $x \in \pi(M)$ and this is true for all $M \in \mu_a$. Hence $x \in \bigcap_{M \in \mu^a} \pi(M)$. So $(a)^\circ \subseteq I_0$.

Conversely, let $x \in I_0$. Thus $x \in \pi(M)$ for all $M \in \mu_a$. Let $x^* \lor a \neq 1$. Then there exists a maximal ideal M_0 such that $x^* \lor a \in M_0$. Hence $x^* \in M_0$ and $a \in M_0$. This implies $x \in \pi(M_0)$. Thus $x^* \notin M_0$, which is a contradiction. Thus $x^* \lor a = 1$ and $x \in (a)^\circ$. So $I_0 \subseteq (a)^\circ$. This completes the proof.

The following result is due to [4].

Lemma 2.7. Let L be a lattice with 1, F be a filter of L. Then an ideal M of L disjoint from F is a maximal ideal disjoint to F if and only if for any element $a \notin M$ there exists an element $b \in M$ with $a \lor b \in F$.

Now we have the theorem.

Lemma 2.8. Let L be a pseudocomplemented 1-distributive lattice. Then M be a maximal ideal of L if and only if for any element $a \notin M$ there exists an element $b \in M$ with $a \lor b = 1$.

Proof. Let *L* be a pseudocomplemented 1-distributive lattice and *M* be a maximal ideal of *L*. Let $a \notin M$ and $b \in M$. So $a \lor b \in [a)$ (by lemma 2.7). Since $a \notin M$, $a \lor b \notin M$ as *M* is an ideal. Let $a \lor b \neq 1$. So $(a \lor b]$ is a proper ideal. Then as $b \leq (a \lor b)$, $M \subseteq (a \lor b]$, which is a contradiction to the fact that *M* is maximal. So $a \lor b = 1$.

Conversely, Assume the condition holds and M is not maximal. Then there exists a proper ideal Q such that $M \subset Q$. Let $x \in Q \setminus M$. Then there exists $y \in M$ such that $x \vee y = 1$. Since $x \in Q$ and $y \in M \subset Q$, we have $1 = x \vee y \in Q$, which is a contradiction to the fact that Q is maximal. This completes the proof.

Now we give the definition of 1-coaxer lattices. A psedocomplemented 1-distributive lattice is called 1-coaxer lattice if $\pi(M) = M$ for every $M \in \mu$. The pentagonal lattice \mathcal{P}_5 is a 1-coaxer lattice (see Figure 1).

Rao [1] proved that $(a)^{\circ} \vee (b)^{\circ} = (a \vee b)^{\circ}$. But in our case, if we consider $(a)^{\circ}$ and $(b)^{\circ}$ in L_1 , (see Figure 2), we see that $(a)^{\circ} \vee (b)^{\circ} = (a] \vee (e] = L$ but $(a \vee b)^{\circ} = (c)^{\circ} = (a]$.

Figure 2: 1-distributive Lattice L₁

Now we have the following theorem.

Theorem 2.9. Let L be a pseudocomplemented 1-distributive lattice and $a, b \in L$. Then

$$(a)^{\circ} \lor (b)^{\circ} = ((a^* \land b^*)^*)^{\circ}.$$

Proof. Let L be a pseudocomplemented 1-distributive lattice and $a, b \in L$. Let

$$K = ((a^* \wedge b^*)^*)^\circ = \{x \in L \mid x^* \lor (a^* \wedge b^*)^* = 1\}.$$

Let $r \in K$ and $s \in L$ with $s \leq r$. Then $r^* \leq s^*$ implies $1 = r^* \vee (a^* \wedge b^*)^* \leq s^* \vee (a^* \wedge b^*)^*$. So $s \in K$. Hence K is a downset.

Now let us consider that, $r, s \in K$. So $r^* \vee (a^* \wedge b^*)^* = 1$ and $s^* \vee (a^* \wedge b^*)^* = 1$. As *L* is 1-distributive, we have $(r^* \wedge s^*) \vee (a^* \wedge b^*)^* = 1$ and this implies that $(r \vee s)^* \vee (a^* \wedge b^*)^* = 1$. So *K* is an ideal.

Clearly K contains $(a)^{\circ}$ and $(b)^{\circ}$, as $a \leq (a \vee b) \leq (a \vee b)^{**}$ and $b \leq (a \vee b) \leq (a \vee b)^{**}$ (by theorem 2.2). Now consider $M = (m)^{\circ}$ for any $m \in L$, be another coaxer ideal which contains $(a)^{\circ}$ and $(b)^{\circ}$. Let $r \in K$. So $r^* \vee (a^* \wedge b^*)^* = 1$. Since M contains $(a)^{\circ}$ and $(b)^{\circ}$, $a \in M$ and $b \in M$. So $(a \vee b) \in M$ as M is a coaxer ideal. So $(a \vee b)^* \vee m = 1$ for every $m \in M$. Thus $(a \vee b)^* \vee m = (a \vee b)^{***} \vee m = 1$ implies that $(a \vee b)^{**} \in M$. Now as $r^* \vee (a^* \wedge b^*)^* = 1$, this implies $r \in M$. So K is the smallest coaxer ideal which contains both $(a)^{\circ}$ and $(b)^{\circ}$.

This completes the proof.

Now we have the following theorem.

Theorem 2.10. Let *L* be a pseudocomplemented 1-distributive lattice. Then the following are equivalent:

- (i) L is 1-coaxer;
- (ii) for any $a, b \in L$, $a \lor b = 1$ implies $(a)^{\circ} \lor (b)^{\circ} = L$;
- (iii) for any $a, b \in L$, $(a)^{\circ} \vee (b)^{\circ} = ((a^* \wedge b^*)^*)^{\circ}$;
- (iv) for any two distinct maximal ideals M and N, $\pi(M) \lor \pi(N) = L$;
- (v) for any $M \in \mu$, M is the unique member of μ such that $\pi(M) = M$;
- (vi) for any $M \in \mu$, $\pi(M)$ is maximal.

Proof. $(i) \Rightarrow (ii)$. Let L be a pseudocomplemented 1-distributive lattice and L is coaxer. Let $a, b \in L$ such that $a \lor b = 1$. Suppose $(a)^{\circ} \lor (b)^{\circ} \neq L$. Then there exists a maximal ideal M such that $(a)^{\circ} \lor (b)^{\circ} \subseteq M$. This implies $(a)^{\circ} \subseteq M$ and $(b)^{\circ} \subseteq M$. So

$$(a)^{\circ} \subseteq M$$

 $\Rightarrow \cap_{M \in \mu^a} \pi(M) \subseteq M \quad [\text{ by Theorem } 2.6]$ $\Rightarrow \pi(M_i) \subseteq M \quad [\text{ for some } M_i \in \mu_a \text{ and by Theorem } 2.5]$ $\Rightarrow M_i \subseteq M \quad [\text{ since } L \text{ is coaxer }]$ $\Rightarrow a \in M$ $\Rightarrow a \notin L \setminus M$

Similarly $b \notin L \setminus M$. Now $L \setminus M$ is a prime filter (see [4]). This implies $1 = a \lor b \notin L \setminus M$. Hence $1 \in M$ and this contradicts the fact that M is proper. So $(a)^{\circ} \lor (b)^{\circ} = L$. (*ii*) \Rightarrow (*iii*). This is clear from theorem 2.9.

 $(iii) \Rightarrow (iv)$. Let M and N be two distinct maximal ideals of L. Let $x \in M \setminus N$ and $y \in N \setminus M$. Then by theorem 2.8,

 $x \notin N \Rightarrow$ there exists $x_1 \in N$ such that $x \lor x_1 = 1$

and

$$y \notin M \Rightarrow$$
 there exists $y_1 \in M$ such that $y \lor y_1 = 1$.

Hence
$$(x \lor y_1) \lor (y \lor x_1) = (x \lor x_1) \lor (y \lor y_1) = 1$$

 $L = (1)^\circ = ((x \lor y_1) \lor (y \lor x_1))^\circ$
 $\Rightarrow L = (((x \lor y_1) \lor (y \lor x_1))_{**})_\circ \text{ [since } 1^{**} = 1 \text{]}$
 $\Rightarrow L = (x \lor y_1)^\circ \lor (y \lor x_1)^\circ \text{ [by } (iii)\text{]}$
 $\Rightarrow L = (x \lor y_1)^\circ \lor (y \lor x_1)^\circ \subseteq \pi(M) \lor \pi(N) \text{ [since } x \lor y_1 \in M \text{ and } (y \lor x_1) \in N \text{]}$

$$\Rightarrow L \subseteq \pi(M) \vee \pi(N)$$

Thus $L = \pi(M) \vee \pi(N)$.

 $(iv) \Rightarrow (v)$. Suppose condition (iv) holds. Let $M \in \mu$ and $N \in \mu$ such that $M \neq N$ and $\pi(N) \subseteq M$. But $\pi(M) \subseteq M$. So this implies that $\pi(M) \lor \pi(N) = M$ and by condition $(iv), \pi(M) \lor \pi(N) = L$, which is contradiction. So M is the unique maximal ideal such that $\pi(M) \subseteq M$. $(v) \Rightarrow (vi)$. Let $M \in \mu$ and let $\pi(M)$ is not maximal. Then let M_0 be another maximal ideal of L such that $\pi(M) \subseteq M_0$. But $\pi(M_0) \subseteq M_0$ implies that M is not unique maximal ideal such that $\pi(M) \subseteq M$, which is contradiction. So $\pi(M)$ is maximal.

 $(vi) \Rightarrow (i)$. This is obvious from the definition of 1-coaxer lattice.

From this above theorem we have the following theorem.

Theorem 2.11. Let L be a pseudocomplemented 1-distributive lattice. If every chain of L has at most three elements, then L is a 1-coaxer lattice.

Proof. Let *L* be a pseudocomplemented 1-distributive lattice and suppose every chain of *L* contains at most three elements. Let $x, y \in L$ with $x \lor y = 1$. If x = 1 or y = 1 then clearly $(x)^{\circ} \lor (y)^{\circ} = L$. Suppose $x \neq 1$ and $y \neq 1$. Then $x \land y \leq x < 1$. Now if $x \land y = x$ we have $y = (x \land y) \lor y = x \lor y = 1$, which is a contradiction. So $x \land y < x < 1$ is a three element chain. Thus $x \land y = 0$ and so $x \leq y^*$ and $y \leq x^*$. This implies $1 = x \lor y \leq x \lor x^*$. Thus $x \in (x)^{\circ}$ and similarly $y \in (y)^{\circ}$. Hence $1 = x \lor y \in (x)^{\circ} \lor (y)^{\circ}$. Therefore $(x)^{\circ} \lor (y)^{\circ} = L$ and *L* is 1-coaxer.

Rao [1] proved that the sublattice of a coaxer lattice is not always coaxer, when the lattice is distributive. So for 1-distributive lattice the sublattice of a 1-coaxer lattice is not always 1-coaxer. Now we have the following theorem.

Theorem 2.12. Let L be a pseudocomplemented 1-distributive lattice. Then every sublattice of L is 1-coaxer if and only if for all $x, y \in L \setminus \{1\}, x \lor y = 1$ implies that $x \land y = 0$.

Proof. At first suppose that every sublattice of L is 1-coaxer. Let $x, y \in L \setminus \{1\}$ with $x \lor y = 1$. If $x \land y \neq 0$ then there exists a $z \in L$ such that $0 < z < x \land y$. Now suppose $L_1 = \{0, z, x \land y, x, y, 1\}$. Then clearly L_1 is a sublattice of L. Now we have a maximal ideal $M = \{0, z, x \land y, x\}$ of L_1 where $\pi(M) = \{0\} \neq M$, which is a contradiction to the fact that every sublattice is 1-coaxer. So $x \land y = 0$.

Conversely let the condition holds and let L_1 be a sublattice of L. Let $x, y \in L_1$ with $x \lor y = 1$. Let $(a)_{L_1^\circ} = (a)^\circ \cap L_1$ for any $a \in L_1$. Now since $x \lor y = 1$, so $(x)_{L_1^\circ} \lor (y)_{L_1^\circ} = L_1$. Consider $x \neq 1$ and $y \neq 1$, then as per the condition $x \land y = 0$. Therefore $x \leq y^*$ and $y \leq x^*$. So $1 = x \lor y \leq x \lor x^*$. This implies $x \in (x)_{L_1^\circ}$ and similarly $y \in (y)_{L_1^\circ}$. Thus $1 = x \lor y \in (x)_{L_1^\circ} \lor (y)_{L_1^\circ}$. So $(x)_{L_1^\circ} \lor (y)_{L_1^\circ} = L_1$. Therefore L_1 is 1-coaxer.

3. CONCLUSION

This paper has systematically explored the concept of coaxer ideals in 1-distributive lattices and introduced the framework for 1-coaxer lattices. Through rigorous

definitions and proofs, we established critical properties and characterizations of coaxer ideals and demonstrated their significance within the broader context of lattice theory. The results provide a deeper understanding of the structure and behavior of pseudocomplemented 1-distributive lattices, including the conditions for minimal and maximal ideals, the interplay between sublattices, and the unique attributes of 1-coaxer lattices.

References

- 1) M. Samvasiva Rao, Coaxer Lattices, Canad. Math. Bull., 60(2), (2017), 372{380.
- 2) C. Nag, S.N. Begum and M.R. Talukder, A Note on Normal and Comaximal lattices, Thammasat International Journal of science and Technology, 21(1), (2016), 1-5.
- 3) C. Nag, S.N. Begum and M.R. Talukder, Some Characterizations of subclasses of P-algebra, Southeast Asian Bulletin of Mathematics, 41, (2017), 535-546.
- 4) C. Nag, S.N. Begum and M.R. Talukder, Kernel Ideals and Cokernel Filters of a P- algebra, Acta Math. Hungar., 154(2) (2018), 279-288.
- 5) Sultana R., Ali M.A., and Noor A.S.A., Some Properties of 0-Distributive and 1-Distributive Lattices, Annals of Pure and Applied Mathematics, 1(2) (2012), 168-175.
- 6) T.S. Blyth, Ideals and Filters of Pseudocomplemented Semilattices, Proceedings of the Edinburgh Mathematicsl Society, 23 (1980), 301{316.
- 7) W.H. Cornish, Annulets and Î-ideals in a Distributive Lattices, Journal of the Australian Mathematical Society, 15(1) (1973), 70{77.
- 8) G. Gråatzer, General Lattice Theory, Birkhåauser Verlag Basel, 1998.
- 9) BirkhoĐ G. Lattice Theory, Third edition, Colloq. Publ., 25, Amer. Math. Soc., Providence, R. I., 1967.
- 10) G. Gråatzer, Lattice Theory. First Concepts and Distributive Lattices, W. H. Freeman, San Francisco, 1971.
- 11) G. Gråatzer, General Lattice Theory, Second Edition, Birkhåauser Verlag Basel, 2002.