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Abstract 

This paper investigates coaxer ideals within 1-distributive lattices and introduces the concept of 1-coaxer 
lattices. The study explores characterizations of coaxer ideals and establishes foundational properties 
of 1-coaxer lattices. Through an analysis of pseudocomplemented 1-distributive lattices, it provides a 
structured understanding of coaxer ideals, minimal and maximal ideals, and their interrelations.  
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1. INTRODUCTION 

The notion of coaxer ideals is introduced in [1] for distributive lattices. In this paper 

we study coaxer ideals in 1-distributive lattices. We also refer the reader to [2, 4] for 1-

distributive lattices and 0-distributive lattices. 

A lattice L with 1 is called 1-distributive if for any a; b; c 2 L, a _ b = 1 = a _ c 
implies a _ (b ̂  c) = 1. The pentagonal lattice P5 (see the diagram in Figure 1) is 1-
distributive but not distributive. Thus, not every 1-distributive lattice is a distributive 
lattice. The diamond lattice M3 (see Figure 1) is not 1-distributive. 

 

 

Figure 1: The pentagonal lattice and the diamond lattice 

An element a*
 2 L is called the psedocomplement of a 2 L is the greatest element 

disjoint from a such that x 6 a*
 if and only if x^a = 0. 

A 1-distributive lattice L is called pseudocomplemented 1-distributive lattice if every 

element in L has a pseudocomplement. P5 is pseudocomplemented 1-distributive lattice 
but M3 is not a pseudocomplemented 1-distributive lattice(see Figure 1). 
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The following well known identities (see [5, 6, 7]) are used throughout this paper. 
(1) a × b implies b* × a* 

(2) a × a** 

(3) a = a*** 

(4) (a _ b)* = a*
 ^ b* 

(5) (a ^ b)**
 = a**

 ^ b** 

      (6) a ^ (a ^ b)*
 = a ^ b* 

An element a 2 L is called dense if a*
 = 0 and the set of all dense elements is denoted 

by D(L) and is a Ñlter of L. For every x 2 L, x _ x*
 2 D(L), since (x _ x*)*

 = 0. 
The identity (6) is used rarely (see [6] for semilattices and see [4] for lattices). An 

ideal I of a lattice L is called a proper ideal if I 6= L. 
An ideal M of L is called a maximal ideal of L if M is proper and if there is a proper 
ideal I of L such that M Õ I then M = I. A minimal ideal I of L is a proper ideal 
which is not belonging to any other proper ideal, that is, if there is a proper ideal J such 

that J Õ I, then I = J . An ideal P of L is called a prime ideal if for any a; b 2 L such 

that a ̂  b 2 P implies a 2 P or b 2 P . For the background of lattices, we refer the reader 
to [9, 10, 11]. 
 

2. Coaxer Ideals 

M. S. Rao [1] gives the deÑnition of coaxer ideals in a pseudocomplemented distributive 
lattice. In this section coaxer ideals is deÑned in a pseudocomplemented 1-distributive 
lattice. Also we give the notion of 1-coaxer lattices. We discuss various properties of 
coaxer ideals. 
Let L be a pseudocomplemented 1-distributive lattice. A non-empty subset I of L is called 

an ideal if 
(i) a 2 L, b 2 I with a 6 b implies a 2 I, 
(ii) a; b 2 I implies a _ b 2 I. 

Let L be a pseudocomplemented 1-distributive lattice, for any a 2 L the coaxer of a is 
the set deÑned as 

(a)Ñ = fx 2 L j xÆ _ a = 1g: 

Clearly (0)Ñ = f0g and (1)Ñ = L. 
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Now we have an important result for this paper. 
Theorem 2.1. Let L be a pseudocomplemented 1-distributive lattice. For any a 2 L, 
(a)Ñ is an ideal of L. 

Proof. Since 0Æ = 1, so obviously 0 2 (a)Ñ. Now let x; y 2 (a)Ñ. This implies x*
 _ 

a = 1 and y*
 _ a = 1. Since L is 1-distributive, a_ (x*

 ̂ y*) = a^ (x_ y)*
 = 1. So 

x_ y 2 (a)Ñ. Again let x 2 (a)Ñ and r 2 L with r × x. So x*
 × r*. This implies 1 = (x*

 _ 

a) × (r*
 _ a). So (r*

 _ a) = 1 and hence r 2 (a)Ñ. This completes the proof. 

This ideal (a)Ñ for any a 2 L is called coaxer ideal of L. 
Rao [1] proved that (a)Ñ Õ (a]. But in our case, if we consider the P5 (see Figure 1), 
we see that (a)Ñ = (b] * (a]. 
Now we have some properties of coaxer ideals. 

Theorem 2.2. Let L be a pseudocomplemented 1-distributive lattice. For any a; b 2 L,  

we have 
 (i) a × b implies that (a)Ñ Õ (b)Ñ. 
 (ii) a _ b = 1 implies a*

 2 (b)Ñ. 
(iii) (a)Ñ Õ (a**]. 
(iv) (a)Ñ \ (b)Ñ = (a ^ b)Ñ. 
(v) (a)Ñ = L if and only if a = 1. 

Proof. (i) Let a × b and let x 2 (a)Ñ. So x*
 _ a = 1. Thus 1 = x*

 _ a × x*
 _ 

b implies x*
 _ b = 1 and hence x 2 (b)Ñ.  

(ii) Since a × a**, we have a_ b = 1 implies a** _ b = 1. So a*
 2 (b)Ñ. 

(iii) Let x 2 (a)Ñ. So x*
 _ a = 1. This implies that x**

 ^ a*
 = 0 and so x**

 × a**. Thus x 

× a**. Hence (a)Ñ Õ (a**]. 
(iv) Let x 2 (a)Ñ \ (b)Ñ. Thus x 2 (a)Ñ and x 2 (b)Ñ. This implies x*

 _ a = 1 and x*
 

_ b = 1. As L is 1-distributive lattice, we have x*
 _ (a ^ b) = 1. So x 2 (a ^ b)Ñ. 

For the converse part we have, (a ^ b) × a and (a ^ b) × b and so using property (i), 
we found that (a ^ b)Ñ × (a)Ñ and (a ^ b)Ñ × (a)Ñ. So this completes the proof. 
(v) If a = 1, then (a)Ñ = (1)Ñ = L. Conversely let (a)Ñ = L, then 1 2 (a)Ñ. So 1*

 _ a = 

1 and this implies a = a _ 0 = a _ 1*
 = 1. This completes the proof. 
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The following theorem is very important theorem which is proved for p-algebra where 
underlying lattice is 0-distributive lattice (see [3]). Here we give the proof of this theorem 

for 1-distributive lattice. 
Lemma 2.3. Let L be a pseudocomplemented 1-distributive lattice and P be a prime ideal 
of L. Then the following conditions are equivalent: 

(i) P is minimal; 
 (ii) x 2 P implies x*

 2= P ; 
(iii) x 2 P impllies x**

 2 P ; 
 (iv) P \ D(L) = á. 

Proof. (i) =) (ii). Let P be a minimal prime ideal and let x*
 2 P for some x 2 P . 

Let D = (LnP )_ [x). Then D is a Ñlter and if 0 2 D, we get 0 = y ^ x for y 2= P . 
Thus we have y × x*

 2 P , which is a contradiction. So 0 2= D and thus (0] \ D = á. 
Now since L is 1-distributive lattice and (0] \ D = á by Theorem 2.3 (see [2]), there 
exists a prime ideal Q such that Q \ D = á. So we have Q Õ P and Q 6= P as x 2= Q. 
So this is contradiction to the fact that P is minimal. 
(ii) =) (iii). Let x 2 P and by (ii), x*

 2= P . Since x*
 ^ x**

 = 0 and P is prime so x**
 

2 P . 
(iii) =) (iv). Let x 2 P \ D(L). Then x*

 = 0 and x**
 2 P implies that x**

 = 1 2 P 

which is a contradiction that P is proper ideal. 
(iv) =) (i). Let P is not minimal and let Q Ý P , where Q is a prime ideal. Let x 

2 P n Q and x ^ x*
 = 0 2 Q, we have x*

 2 Q Ý P . As P is an ideal we have x_x*
 2 P . 

As x_x*
 2 D(L) for every x 2 L, we have (x _ x*) 2 P \ D(L), which is a contradiction 

of (iv). Hence P is minimal. 
Now we have the following theorem. 
Theorem 2.4. Every proper coaxer ideal of a pseudocomplemented 1- distributive lattice 
L is contained in a minimal prime ideal. 
Proof. Let L be a pseudocomplemented 1-distributive lattice and let (a)Ñ be a proper 
coaxer ideal of L where a 2 L. Let (a)Ñ \D(L) 6= á and d 2 (a)Ñ \ D(L). If d 2 (a)Ñ \ D(L) 
then we have d 2 (a)Ñ and d 2D(L). This implies d*

 _ a = 1 a n d  0 _ a = 1. Hence  
a = 1 a n d  c o n s e q u e n t l y (a)Ñ = L 

Which is a contradiction to the fact that (a)Ñ is a proper coaxer ideal of L. So (a)Ñ \ D(L) 
= á. Then by Theorem 2.3 (see [2]), there exists a prime ideal P such that (a)Ñ Õ P 

and P \ D(L) = á. Let x 2 P . Then x _ x*
 2 D(L) and x _ x*

 2= P . Since P is a ideal 
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and x 2 P , so x*
 2= P . Therefore P is minimal prime ideal (by Lemma 2.3) such that 

(a)Ñ Õ P . 
Now let us discuss about a special type of ideal. If M is a maximal ideal of a 

pseudocomplemented 1-distributive lattice L, deÑne 
Ü(M) = fx 2 L j x*

 2= Mg: 
Theorem 2.5. Let L be a pseudocomplemented 1-distributive lattice and let M be a 

maximal ideal of L. Then Ü(M) is an ideal of L such that Ü(M) Õ M . 
Proof. Let M be a maximal ideal of a pseudocomplemented 1- distributive lattice 
L. Then M is maximal (see [4]). Since 0*

 = 1 2= M so 0 2 Ü(M). So Ü(M) is non-empty. 
Let x; y 2 Ü(M). Thus x*

 2= M and y*
 2= M . So 

              x*
 ^ y*

 2= M [since M is prime] 
         ) (x _ y)*

 2= M 

         ) (x _ y) 2 Ü(M): 
Again let x 2 Ü(M) and y 2 L with y × x. Thus x*

 2= M and consequently (x ^ 

y)*
 2= M , otherwise x*

 2 M . So x ^ y = y 2 Ü(M). Hence Ü(M) is an ideal of L. 
Now let x 2 Ü(M). So x*

 2= M and since M is a prime ideal x^x*
 = 0 2 M implies that 

x 2 M . Hence Ü(M) Õ M . 

Let L be a pseudocomplemented 1-distributive lattice and let M be a maximal ideal of 
L. let us denote the set of all maximal ideals by Ù and let Ùa = fM 2 Ù j a 2 Mg. Now 

we have the theorem. 
Theorem 2.6. Let L be a pseudocomplemented 1-distributive lattice and let M be a 

maximal ideal of L and let a 2 L. Then (a)Ñ = \M2Ùa Ü(M). 
Proof. Let L be a pseudocomplemented 1-distributive lattice and let I0 = \M2Ùa 

Ü(M). Let x 2 (a)Ñ and let M 2 Ùa. Then x*
 _ a = 1. Now a 2 M and if x*

 2 M then 

1 2 M , which is a contradiction. So x*
 2= M . So x 2 Ü(M) and this is true for all 

M 2 Ùa. Hence x 2 \M2Ùa Ü(M). So (a)Ñ Õ I0. 
Conversely, let x 2 I0. Thus x 2 Ü(M) for all M 2 Ùa. Let x*_a 6= 1. Then there exists a 

maximal ideal M0 such that x*
 _ a 2 M0. Hence x*

 2 M0 and a 2 M0. This implies x 2 

Ü(M0). Thus x*
 2= M0, which is a contradiction. Thus x*

 _ a = 1 and x 2 (a)Ñ. So I0 Õ 

(a)Ñ. This completes the proof. 
The following result is due to [4]. 
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Lemma 2.7. Let L be a lattice with 1, F be a Ñlter of L. Then an ideal M of L disjoint 
from F is a maximal ideal disjoint to F if and only if for any element a 2= M there exists 
an element b 2 M with a _ b 2 F . 
Now we have the theorem. 
Lemma 2.8. Let L be a pseudocomplemented 1-distributive lattice. Then M be a 

maximal ideal of L if and only if for any element a 2= M there exists an element b 2 M 

with a _ b = 1 . 
Proof. Let L be a pseudocomplemented 1-distributive lattice and M be a maximal 
ideal of L. Let a 2= M and b 2 M . So a _ b 2 [a) (by lemma 2.7). Since a 2= M , a _ b 2= 

M as M is an ideal. Let a _ b 6= 1 . So (a _ b] is a proper ideal. Then as b × (a _ b), M 

Õ (a _ b], which is a contradiction to the fact that M is maximal. So a _ b = 1. 
Conversely, Assume the condition holds and M is not maximal. Then there exists a proper 
ideal Q such that M Ý Q. Let x 2 Q n M . Then there exists y 2 M such that x _ y = 

1. Since x 2 Q and y 2 M Ý Q, we have 1 = x _ y 2 Q, which is a contradiction to the 
fact that Q is maximal. This completes the proof. 
Now we give the deÑnition of 1-coaxer lattices. A psedocomplemented 1-distributive 
lattice is called 1-coaxer lattice if Ü(M) = M for every M 2 Ù. The pentagonal lattice 
P5 is a 1-coaxer lattice (see Figure 1). 
Rao [1] proved that (a)Ñ _ (b)Ñ = (a _ b)Ñ. But in our case, if we consider (a)Ñ and 

(b)Ñ in L1, (see Figure 2), we see that (a)Ñ _ (b)Ñ = (a] _ (e] = L but (a _ b)Ñ = (c)Ñ = 

(a]. 

 

Figure 2: 1-distributive Lattice L1 

Now we have the following theorem. 
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Theorem 2.9. Let L be a pseudocomplemented 1-distributive lattice and a; b 2 L. Then 

(a)Ñ _ (b)Ñ = ((a*
 ^ b*)*)Ñ: 

Proof. Let L be a pseudocomplemented 1-distributive lattice and a; b 2 L. Let 
K = ((a*

 ^ b*)*)Ñ = fx 2 L j x*
 _ (a*

 ^ b*)*
 = 1g: 

Let r 2 K and s 2 L with s × r. Then r*
 × s*

 implies 1 = r*
 _ (a*

 ^ b*)*
 × s*

 _ 

(a*
 ^ b*)*

 . So s 2 K. Hence K is a downset. 
Now let us consider that, r; s 2 K. So r*

 _ (a*
 ^ b*)*

 = 1 and s*_(a*^b*)*
 = 1. As 

L is 1-distributive, we have (r*^s*)_(a*^b*)*
 = 1 and this implies that (r _ s)*

 _ (a*
 ^ b*)*

 

= 1. So K is an ideal. 
Clearly K contains (a)Ñ and (b)Ñ, as a × (a _ b) × (a _ b)**

 and b × (a _ b) × (a _ 

b)**
 (by theorem 2.2). Now consider M = (m)Ñ for any m 2 L, be another coaxer ideal 

which contains (a)Ñ and (b)Ñ. Let r 2 K. So r*
 _ (a*

 ^ b*)*
 = 1. Since M contains (a)Ñ 

and (b)Ñ, a 2 M and b 2 M . So (a _ b) 2 M as M is a coaxer ideal. So (a _ b)*
 _ m = 1 

for every m 2 M . Thus (a _ b)*
 _ m = (a _ b)***

 _ m = 1 implies that (a _ b)**
 2 M . Now 

as r*
 _ (a*

 ̂  b*)*
 = 1, this implies r 2 M . So K is the smallest coaxer ideal which contains 

both (a)Ñ and (b)Ñ. 
This completes the proof. 
Now we have the following theorem. 
Theorem 2.10. Let L be a pseudocomplemented 1-distributive lattice. Then the following 

are equivalent: 
(i) L is 1-coaxer; 
(ii) for any a; b 2 L, a _ b = 1 implies (a)Ñ _ (b)Ñ = L; 
(iii) for any a; b 2 L, (a)Ñ _ (b)Ñ = ((aÆ ^ bÆ)Æ)Ñ; 
(iv) for any two distinct maximal ideals M and N , Ü(M) _ Ü(N) = L; 
(v) for any M 2 Ù, M is the unique member of Ù such that Ü(M) = M ; 

    (vi) for any M 2 Ù, Ü(M) is maximal. 

Proof. (i) ) (ii). Let L be a pseudocomplemented 1-distributive lattice and L is 
coaxer. Let a; b 2 L such that a _ b = 1. Suppose (a)Ñ _ (b)Ñ 6= L. Then there exists 
a maximal ideal M such that (a)Ñ _ (b)Ñ Õ M . This implies (a)Ñ Õ M and (b)Ñ Õ M . So 

(a)Ñ Õ M 
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) \M2Ùa Ü(M) Õ M [ by Theorem 2.6] 
) Ü(Mi) Õ M [ for some Mi 2 Ùa and by Theorem 2.5] 
) Mi Õ M [ since L is coaxer ] 
) a 2 M 

) a 2= L n M 

Similarly b 2= L n M . Now L n M is a prime Ñlter (see [4]). This implies 1 = a _ b 2= 

L n M . Hence 1 2 M and this contradicts the fact that M is proper. So (a)Ñ _ (b)Ñ = L. 
(ii) ) (iii). This is clear from theorem 2.9. 
(iii) ) (iv). Let M and N be two distinct maximal ideals of L. Let x 2 M n N and y 2 

N n M . Then by theorem 2.8, 
x 2= N ) there exists x1 2 N such that x _ x1 = 1        

and 

               y 2= M ) there exists y1 2 M such that y _ y1 = 1. 
Hence (x _ y1) _ (y _ x1) = (x _ x1) _ (y _ y1) = 1 

      L = (1)Ñ = ((x _ y1) _ (y _ x1))Ñ 

 ) L = (((x _ y1) _ (y _ x1))ÆÆ)Ñ [since 1ÆÆ = 1 ] 

 ) L = (x _ y1)Ñ _ (y _ x1)Ñ [by (iii)] 

) L = (x _ y1)Ñ _ (y _ x1)Ñ Õ Ü(M) _ Ü(N) [ since x _ y1 2 M and (y _ x1) 2 N ] 

 ) L Õ Ü(M) _ Ü(N) 

Thus L = Ü(M) _ Ü(N). 

(iv) ) (v). Suppose condition (iv) holds. Let M 2 Ù and N 2 Ù such that M =6 N 

and Ü(N) Õ M . But Ü(M) Õ M . So this implies that Ü(M) _ Ü(N) = M and by 

condition (iv), Ü(M) _ Ü(N) = L, which is contradiction. So M is the unique maximal 
ideal such that Ü(M) Õ M . 
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(v) ) (vi). Let M 2 Ù and let Ü(M) is not maximal. Then let M0 be another maximal 
ideal of L such that Ü(M) Õ M0. But Ü(M0) Õ M0 implies that M is not unique 
maximal ideal such that Ü(M) Õ M , which is contradiction. So Ü(M) is maximal. 
(vi) ) (i). This is obvious from the deÑnition of 1-coaxer lattice. 
From this above theorem we have the following theorem.  
Theorem 2.11. Let L be a pseudocomplemented 1-distributive lattice. If every chain of 
L has at most three elements, then L is a 1-coaxer lattice. 
Proof. Let L be a pseudocomplemented 1-distributive lattice and suppose every 

chain of L contains atmost three elements. Let x; y 2 L with x _ y = 1. If x = 1 or y = 1 

then clearly (x)Ñ _ (y)Ñ = L. Suppose x 6= 1 and y =6 1. Then x ^ y × x < 1. Now if 
x ^ y = x we have y = (x ̂  y) _ y = x _ y = 1, which is a contradiction. So x ̂  y < x < 

1 is a three element chain. Thus x ^ y = 0 and so x × yÆ and y × xÆ. This implies 1 = 

x _ y × x _ xÆ. Thus x 2 (x)Ñ and similarly y 2 (y)Ñ. Hence 1 = x _ y 2 (x)Ñ _ (y)Ñ. 
Therefore (x)Ñ _ (y)Ñ = L and L is 1-coaxer. 
Rao [1] proved that the sublattice of a coaxer lattice is not always coaxer, when the 
lattice is distributive. So for 1-distributive lattice the sublattice of a 1-coaxer lattice is 
not always 1-coaxer. Now we have the following theorem. 
Theorem 2.12. Let L be a pseudocomplemented 1-distributive lattice. Then every 

sublattice of L is 1-coaxer if and only if for all x; y 2 Lnf1g, x _ y = 1 implies that x ^ y 

= 0. 
Proof. At Ñrst suppose that every sublattice of L is 1-coaxer. Let x; y 2 Lnf1g with 

x_y = 1. If x^y =6 0 then there exists a z 2 L such that 0 < z < x^y. Now suppose L1 

= f0; z; x^y; x; y; 1g. Then clearly L1 is a sublattice of L. Now we have a maximal ideal M 

= f0; z; x^y; xg of L1 where Ü(M) = f0g 6= M , which is a contradiction to the fact that 
every sublattice is 1-coaxer. So x ^ y = 0. 
 Conversely let the condition holds and let L1 be a sublattice of L. Let x; y 2 L1 with 

x _ y = 1. Let (a)L1Ñ = (a)Ñ \ L1 for any a 2 L1. Now since x _ y = 1, so (x)L1Ñ _ (y)L1Ñ 

= L1. Consider x 6= 1 and y 6= 1, then as per the condition x ^ y = 0. Therefore x × y*
 

and y × x*. So 1 = x _ y × x _ x*. This implies x 2 (x)L1Ñ and similarly y 2 (y)L1Ñ. 
Thus 1 = x _ y 2 (x)L1Ñ _ (y)L1Ñ. So (x)L1Ñ _ (y)L1Ñ = L1. Therefore L1 is 1-coaxer. 
 
3. CONCLUSION 

This paper has systematically explored the concept of coaxer ideals in 1-distributive 
lattices and introduced the framework for 1-coaxer lattices. Through rigorous 
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definitions and proofs, we established critical properties and characterizations of 
coaxer ideals and demonstrated their significance within the broader context of lattice 
theory. The results provide a deeper understanding of the structure and behavior of 
pseudocomplemented 1-distributive lattices, including the conditions for minimal and 
maximal ideals, the interplay between sublattices, and the unique attributes of 1-
coaxer lattices. 
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