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ABSTRACT:  

It is well known that a qubit is a superposition of two orthogonal quantum states while, a qutrit is a 
superposition of three mutually orthogonal quantum states. It means qutrit is more advantageous than 
qubit, in carrying information via. quantum based devices. Beside it, higher dimensional quantum states 
offer many other benefits like increased security, large channel capacity for communication, more 
efficient quantum operations etc. More generally, qubits in higher dimensions provide intensive in sights 
in perspective of quantum correlations. Specifically, qutrits are of great importance in quantum 
information science. Qubits manipulation and controlling were demandable job at first but presently they 
are commonly used in quantum usage. Now a days it is become more enthralling to study qubit 
information in higher dimension Hilbert spaces, by raising number of qubits or by increasing the 
dimension of quantum systems. The present work proposes the sharing of information using bi-qutrit 
quantum states based on bivariate quantum gates. 

Keywords: Quantum Cryptography, Threshold Quantum Secret Sharing, Lagrange Interpolation, 
Bivariate Operator 

1. INTRODUCTION  

A scheme in which a secret is distributed into pieces so that each member consists of 
its own unique piece is called a secret sharing scheme (SSS). SSS is an essential 
idea of securing information. SS schemes are supreme for hiding secret that is very 
sensitive and highly important. For example, missile launch codes and joint checking 
accounts. Here is a complete scenario for joint checking account example. Suppose 
seven persons want to open a joint checking account. Now, the bank aims to hide all 
the information of that account for which the bank generates a secret password. For 
the security of this account, the bank distributes that password among all seven 
persons so that no less than five persons can access that joint account. This scheme 
is called (5, 7)-threshold SSS, where 5 is a threshold value. In general, in (t, n)-
threshold SSS, the dealer divides the secret into n pieces and allocates them into n 
participants. Then, any t or more participants can recover the secret, but less than t 
participants have no information about the secret.  

SS plays an important role in preventing secret information from being stolen, erased, 
or modified. As a result, SS is often used in threshold authentication[1, 2], quantum 
SS(QSS) protocols [3]-[10], etc. Since 1979, researchers have been studying SSS. 
Blakely [12] and Shamir [11] separately introduced a SSS in 1979, based on the 
solution of a system of linear equations and the Lagrange interpolation method (LIM). 
Quantum Secret Sharing (QSS) is a quantum cryptography extension of SS, and the 
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difference between SS and QSS is that QSS’s security depends on a fundamental 
property of quantum physics. Quantum information is used in QSS as a cryptographic 
technique to overcome sharing classical or quantum secrets. That is, the dealer 
transmits a secret to a set of participants, which may be conventional information or 
an unknown quantum state, and recovering the secret requires a specific set of 
participants to cooperate. Hillery et al. [13] introduced the first QSSS in 1999, relying 
on the Greenberger-Home-Zeilinger (GHZ) state. 

Lu et al.[10] introduced one particle with two dimensions QSSS using LIM. Later on, 
Kumar et al.[18] introduced one particle with three dimensions QSSS based on LIM. 
These schemes are not based on two particles QSSS. Our scheme uses two particles 
with three dimensions quantum states for sharing information that means it can carry 
more information at a time. By comparing it with the existing schemes [13]-[15] that 
use entangled states, our scheme seems easier to understand and more practicable 
to implement due to its only dependence on the bi-qutrit and bivariate quantum 
operation. In our scheme, we have introduced a “two particles with three dimensions 
quantum state sharing scheme based on LIM & bivariate operator”. 

2. PRELIMINARIES 

This section describes some definitions and conclusions relevant to the qutrit and their 
mathematical contexts, which are highly useful in understanding our proposed 
scheme. 

2.1 Qutrit Quantum state [18]: A qutrit quantum state |Φ〉is defined as 

|Φ〉 = α1|0〉 + α2|1〉 + α3|2〉    (2.1) 

where αi, for i = 1, 2, 3, are scalars (real or complex) and holds the following identity 

9
2

1

| | 1.i

i




  

2.2  Bi-Qutrit quantum state: A bi-qutrit quantum state |T〉is defined as 

|T〉 = α1|00〉+ α2|01〉 + α3|02〉 + α4|10〉 + α5|11〉 + α6|12〉 + α7|20〉 + α8|21〉 + α9|22〉 
           (2.2) 

where αi, for i = 1, 2, . . . , 9, are scalars and holds the following identity 

9
2

1

| | 1.i

i




  

2.3  Sequence of bi-qutrit quantum states: A sequence of bi-qutrit quantum states   

{|Tq〉} is defined as 

{Tq : Tq = α1q|00〉 + α2q|01〉 + α3q|02〉 + α4q|10〉 + α5q|11〉 + α6q|12〉 + α7q|20〉 + α8q|21〉 

+ α9q|22〉, 1 ≤ q ≤ m}         (2.3) 
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where αiq, for i = 1, 2, . . . , 9, are scalars and holds the following identity 

9
2

1

| | 1, for q=1,2,...,m.iq

i




  

 

2.4 Quantum operation for bi-qutrit quantum state: The quantum operation 

denoted by U(θ, φ) for the bi-qutrit quantum state |T〉 is defined as 

U(θ, φ) = cos(θ) [|00〉〈00| + |01〉〈01| + |02〉〈02| + |10〉〈10|] + sin(θ) [|01〉〈00| + |02〉〈10| 

− |00〉〈01| − |10〉〈02|]  + cos(2φ) [|12〉〈12| + |20〉〈20| + |21〉〈21| + |20〉〈20|]  + sin(2φ) 

[|20〉〈12| + |21〉〈22| − |12〉〈20| − |22〉〈21|]  + 𝑒−2iφ|11〉〈11| 

where θ and φ are two parameters. 

2.5 Dealer: A reliable party that divides secret information into parts and distributes 
these parts among n−members who want to share confidential information. 

2.6 Decoy particles: The decoy photons are some fake 2−qutrit quantum states that 
are generated at random by the dealer and introduced into a sequence of 2−qutrit 
quantum states during the transmission of secret information between members to 
ensure the confidential information’s security. 

2.7 Lagrange’s interpolation method [18]: For a given set of (n+1) points, say (xi, hi), 
i = 0, 1, 2, . . . , n, we can generate the Lagrange’s interpolation polynomial h(x) 
with degree n as follows: 

ℎ(𝑥) = ∑ ℎ(𝑥𝑖) ∏
𝑥 − 𝑥𝑟

𝑥𝑖 −  𝑥𝑟

𝑛

𝑟=0,𝑟≠1

𝑛

𝑖=0

= 𝑏0 + 𝑏1𝑥 + ⋯ + 𝑏𝑛𝑥𝑛 

where hi= h(xi) and b0, b1, . . . , bn are constant coefficients of h(x) which have taken 
from 

the finite field Fp, where p is a given prime number. 

In our present scheme, the secret value S is formed by the following presumption that 

S = h(0) = b0. 
Lemma 2.1. [18] Suppose U(θ1, φ1), U(θ2, ϕ2), . . . , U(θn, ϕn) are n−bivaraite quantum 
operation. After applying these bivaraite quantum operation on a bi-qutrit quantum 

state |T〉then U holds the following relation 

U(θ1, ϕ1)U(θ2, ϕ2). . . U(θn, ϕn)|T〉 = U(θ1 + θ2 + . . . + θn, ϕ1 + ϕ2 + . . . + ϕn)|T〉.                  
(2.4) 

Lemma 2.2. [18] If in a Shamir’s (t, n) − threshold SSS, dealer distributes the secret 
shares(xr, hr) with r = 1, 2, . . . , l, t ≤ l ≤ n to the members Mr, then secret S = h(0) can 
be recovered with the collaboration of all lmembers, by the following expression 
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S =  ℎ(0) = ∑ 𝐿𝑟ℎ𝑟 (𝑚𝑜𝑑 𝑝),

𝑙

𝑟=1

 

where 

𝐿𝑟ℎ𝑟 = [(∏
𝑥𝜔

𝑥𝜔−𝑥𝑟

𝑙
𝜔=1,𝜔≠1 ) ℎ𝑟] 𝑚𝑜𝑑 𝑝(2.5) 

and h(x) is the Lagrange interpolation polynomial of degree (l − 1) generated by l 
points(xr, hr) with r = 1, 2, . . . , l. 

Remark: It is noticeable that in Shamir’s secret sharing scheme, the dealer keeps the 
point(0, h0) private as it consists of the secret information S = h0i.e. the point (0, h0) is 
not distributed to any of the members. 
Corollary 2.3. [18] If in Lemma-2.2, the secret S is recovered by the relation 

S =  ℎ(0) = ∑ 𝐿𝑟ℎ𝑟 (𝑚𝑜𝑑 𝑝)𝑙
𝑟=1  with𝐿𝑟ℎ𝑟 = [(∏

𝑥𝜔

𝑥𝜔−𝑥𝑟

𝑙
𝜔=1,𝜔≠1 ) ℎ𝑟] 𝑚𝑜𝑑 𝑝, 

then∑ 𝐿𝑟ℎ𝑟 =  𝑁𝑝
𝑙
𝑟=1 + 𝑆, where N is a positive integer. 

3 PROPOSED SCHEME 

The proposed method involves (t, n) −threshold bi-qutrit quantum state sharing. This 
scheme shares the secret key using Shamir’s technique, then rebuilds the original 
information using bivariate quantum operator and Lagrange’s interpolation formula on 
a sequence of bi-qutrit quantum states. Suppose at least t−members out of n, say {M1, 
M2, . , Mt} with1 ≤ t ≤ n, request to a dealer which has bi-qutrit quantum information {Tq 

: 1 ≤ q ≤ m}as given by (2.3) to restore the original secret information |Tq〉. This section 
is divided into three parts, which are discussed below: 

3.1 Key Distribution Phase: First of all, the dealer allocates the private keys to each 
member using the following steps: 

1) Dealer selects an arbitrary polynomial of degree t − 1 over field Fp of cardinality p, 
under addition modulo p such that 

ℎ(𝑥) = [𝑐0 + 𝑐1𝑥 + ⋯ +  𝑐𝑡−1𝑥𝑡−1]𝑚𝑜𝑑 𝑝, 
Where c0 = S = h(0) < p (p is the cardinality of the field Fp) is the value of secret 
and (c1, c2, . . . , ci−1) ∈ Fp. 

2) Dealer chooses the public key xk(∈ Fp) of the member Mk for k = 1, 2, . . . , n, in 
such a way that xk, xv∈ Fp with xk≠ xv for k≠v. 

3) Dealer finds each share h(xk) to corresponding shareholder Mk for k = 1, 2, . . . , n 
and sends h(xk) to the each member Mk through quantum direct secure 
communication[16,17]. 

3.2 Sharing of quantum states phase: In this phase, the dealer wants to divide the 
original information into n members, as discussed below: 

1) Firstly, the dealer selects a random sequence {|Tq〉} defined by equation (2.3). 

2) For the sharing of secret information |Tq〉 among the participants, dealer prepares 
some random decoy particles from the following basis 
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µ = {|0〉, |1〉, |2〉} 

ʋ = {
1

√3
(|0〉 + |1〉 + |2〉),

1

√3
(|0〉 + 𝑒

2𝜋𝑖
3 |1〉, +|2〉) ,

1

√3
(|0〉 + 𝑒

4𝜋𝑖
3 |1〉 + 𝑒

2𝜋𝑖
3 |2〉)} 

3) Now, the dealer performs his bivariate phase operator U(θ0, 𝜑0) on each quantum 
states of sequence |Tq〉, then we get a new sequence of 2−qutrit quantum states 
as 

{|𝑇𝑞
0〉: |𝑇𝑞

0〉 = 𝛼1𝑞cos(θ0)  −  α2q sin(θ0))|00〉  +  (𝛼1𝑞 sin(θ0)  +  α2q cos(θ0))|01〉

+ (α3q cos(θ0)  +  α4q sin(θ0))|02〉  +  (−α3q sin(θ0)  

+ α4q cos(θ0))|10〉 +  α3q𝑒−2i𝜑0|11〉 +  (α6q cos(2𝜑0)  

− α7q sin(2𝜑0))|12〉  +  (α6q sin(2𝜑0)  +  α7q cos(2𝜑0))|20〉

+ (α8q cos(2𝜑0)  +  α9q sin(2𝜑0))|21〉  +  (−α8q sin(2𝜑0)  

+ α9q cos(2𝜑0))|22〉} 

where(θ
0

, 𝜑0) = (
−2𝜋𝑆

𝑝
,

𝜋𝑆

𝑝
) and S is the secret value. 

4) Next, the dealer adds some decoy particles randomly picked from the bases {µ, ν} 

into the sequence {|𝑇𝑞
0〉}for detecting spy.  

5) After noting the place of every decoy particle, the dealer transmits the sequence to 
any of the participants, say Mi, 1 ≤ i ≤ n. The dealer proclaims the place of decoy 
photons and requests Mi to detect these photons according to their basis in {µ, ν} 
after confirming that Mi has obtained the sequence. Mi presents the outcomes of 
his measurements. By comparing the measured results to the original states, the 
dealer can establish the error rate.  

6) If threshold value is less than the error rate, the sender instructs Mi to stop the 
procedure and begin a new procedure. Otherwise, the procedure will be continued. 

The quantum state sequence has been dispersed across n members due to the 
preceding steps, and any t of these n can collaborate to recover the original sequence. 

3.3 Recovery Phase: Members {M1, M2, . . . , Mt} must first complete the following 
steps in order to recover the sequence of 2−qutrit quantum states. 

1) By removing the decoy particles, M1 extracts the sequence {|𝑇𝑞
0〉} from the 

received sequence. Now, M1 calculates𝐿1ℎ(𝑥1) =

[(∏
𝑥𝜔

𝑥𝜔−𝑥1

𝑡
𝜔=2 ) ℎ(𝑥1)] 𝑚𝑜𝑑 𝑝with the help of his share and LIM, and then 

performs bivariate operator U(θ1, 𝜑1)on each quantum state of sequence{|𝑇𝑞
0〉}, 

where (θ
0

, 𝜑0) = (
2𝜋𝐿1 ℎ(𝑥1)

𝑝
,

−𝜋𝐿1 ℎ(𝑥1)

𝑝
).Then, we get a new transformed 

sequence{|𝑇𝑞
1〉}, where |𝑇𝑞

1〉 = 𝑈(θ
1

, 𝜑1)|𝑇𝑞
0〉.  After that M1transmits{|𝑇𝑞

1〉} to M2. 

2) Now, M2 calculates𝐿2ℎ(𝑥2) = [(∏
𝑥𝜔

𝑥𝜔−𝑥2

𝑡
𝜔=1,𝜔≠2 ) ℎ(𝑥2)] 𝑚𝑜𝑑 𝑝with the help of 

hisshare and LIM, and then performs bivariate operator U(θ2, 𝜑2)on each 

quantum state of sequence{|𝑇𝑞
1〉}, where (θ

2
, 𝜑2) = (

2𝜋𝐿2 ℎ(𝑥2)

𝑝
,

−𝜋𝐿2 ℎ(𝑥2)

𝑝
).Then, 

we geta new transformed sequence{|𝑇𝑞
2〉}, where |𝑇𝑞

2〉 = 𝑈(θ
2

, 𝜑2)|𝑇𝑞
1〉.  After 

that M2transmits{|𝑇𝑞
2〉} to M2. 
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3) Each remaining member, Mr; r = 3, 4, ..., t, now repeats the process as M2 
does in step 2. After the last member Mt completes his bivariate operation 

U(θt, 𝜑t), (θ
𝑡
, 𝜑t) = (

2𝜋𝐿𝑡 ℎ(𝑥𝑡)

𝑝
,

−𝜋𝐿𝑡 ℎ(𝑥𝑡)

𝑝
), we get  

(θ
𝑡
, 𝜑t) =  𝑈(θ

𝑡
, 𝜑t)𝑈(θ

𝑡−1
, 𝜑t−1)𝑈(θ

𝑡−2
, 𝜑t−2) … 𝑈(θ

2
, 𝜑2)𝑈(θ

1
, 𝜑1)|𝑇𝑞

0〉 

 =  𝑈(θ
𝑡
, 𝜑t)𝑈(θ

𝑡−1
, 𝜑t−1)𝑈(θ

𝑡−2
, 𝜑t−2) … 𝑈(θ

2
, 𝜑2)𝑈(θ

1
, 𝜑1)𝑈(θ

0
, 𝜑0)|𝑇𝑞

0〉 

=  𝑈(θ
𝑡

+ θ𝑡−1 +  θ𝑡−2 + ⋯ +  θ1 +  θ0, 𝜑𝑡 + 𝜑𝑡−1 +  𝜑𝑡−2 + ⋯ + 𝜑1

+  𝜑0)|𝑇𝑞〉 

= 𝑈 (
2𝜋

𝑝
(∑ 𝐿𝑟

𝑡

𝑟=1
ℎ𝑟 − 𝑆) , −

𝜋

𝑝
(∑ 𝐿𝑟

𝑡

𝑟=1
ℎ𝑟 − 𝑆) |𝑇𝑞〉) 

= 𝑈 (
2𝜋

𝑝
(𝑁𝑝 + 𝑆 − 𝑆), −

𝜋

𝑝
(𝑁𝑝 + 𝑆 − 𝑆)|𝑇𝑞〉)  (N є Z) 

= U(2πN, -πN)|𝑇𝑞〉    (N є Z) 

= |𝑇𝑞〉 

Hence, any tparticipants can recover the original sequence |𝑇𝑞〉. 

4. CORRECTNESS OF THE PROPOSED SCHEME 

First, dealer applies their bivariate quantum operation, sayU(θ0, 𝜑0)and after that all 
t−participants applies their corresponding bivariate phase operations, say,U(θ1, 𝜑1), 

U(θ2, 𝜑2), … U(θt, 𝜑t), on original sequence of bi-qutrit quantum state|𝑇𝑞〉, then it 

becomes|𝑇𝑞
𝑡〉, which is given by 

|𝑇𝑞
𝑡〉 =   𝑈(θ

𝑡
, 𝜑t)𝑈(θ

𝑡−1
, 𝜑t−1) … (θ

2
, 𝜑2)(θ

1
, 𝜑1)(θ

0
, 𝜑0)|𝑇𝑞〉 (2.6) 

By using Lemma-2.1, equation (2.6) can be written as 

|𝑇𝑞
𝑡〉 =   𝑈(θ

𝑡
+ θ𝑡−1 + ⋯ + θ1 +  θ0, 𝜑t + 𝜑t−1 + ⋯ +  𝜑1 + 𝜑0)|𝑇𝑞〉 (2.7) 

Now, substitute the values of (θk, 𝜑k), with k = 0, 1, . . . , t, in (2.7) and add up all the 
innerterms in U, we get 

|𝑇𝑞
𝑡〉 = 𝑈 (

2𝜋

𝑝
(∑ 𝐿𝑟

𝑡
𝑟=1 ℎ𝑟 − 𝑆), −

𝜋

𝑝
(∑ 𝐿𝑟

𝑡
𝑟=1 ℎ𝑟 − 𝑆)) |𝑇𝑞〉. (2.8) 

Now with the help of Corollary-2.3 and definition of bivariate operator in equation (2.8), 
we get the initial secret information as 

|𝑇𝑞
𝑡〉 =  |𝑇𝑞〉 

This proves the correctness of the proposed scheme for bi-qutrit quantum state 
sharing. 
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5. CONCRETE ILLUSTRATION OF THE PROPOSED SCHEME 

We will justify our proposed schemes with the help of the following example consisting 
of a (5, 7) −threshold QSS scheme over the finite field F13. In this example, we have t 
= 5,n = 7 and p = 13. 

5.1. Key Distribution Phase: This phase completes in the following steps: 

1) Dealer chooses a random polynomial h(x) = 11 + 2x + 3x2 + x3 + 4x4 of degree four 
over F13, with the secret information s = 11 = h(0). 
 

2) Dealer chooses the public key xk= k + 3 for participant Mk, k = 1, 2, 3, 4, 5, 6, 
7.Then, dealer calculates hkusing the polynomial h(x) = 11 + 2x+ 3x2 +x3 + 4x4 with 
the relation hk = h(xk), as follows: 
h1 = h(x1 = 4) = 1155(mod13) = 11, h2 = h(x2 = 5) = 2721(mod13) = 4, 
h3 = h(x3 = 6) = 5531(mod13) = 6, h4 = h(x4 = 7) = 10119(mod13) = 5, 
h5 = h(x5 = 8) = 17115(mod13) = 7, h6 = h(x6 = 9) = 27245(mod13) = 10, 
h7 = h(x7 = 10) = 41331(mod13) = 4. 

3) Finally, dealer use the quantum secure direct communication methods of [16, 17] 
to distribute the shares h1 = 11, h2 = 4, h3 = 6, h4 = 5, h5 = 7, h6 = 10 and h7 = 4 to 
the participants M1, M2, M3, M4, M5, M6 and M7 respectively. 

5.2. Sharing of Quantum State Phase: In this phase, firstly dealer performs his 

bivariate operation U(θ0, 𝜑0), (θ0, 𝜑0) =  (
−2𝜋𝑆

𝑝
,

𝜋𝑆

𝑝
) =  (

−22𝜋

13
,

11𝜋

13
), on the bi-qutrit 

sequence |Tq〉. Then, he distributes the sequence into n members as we did in section 
(3.2). 
5.3. Recovery Phase: Suppose M1, M2, M4, M6, and M7wish to recover the secret 

information |Tq〉. For this, participants M1, M2, M4, M6, and M7respectively calculate 
L1h(x1),L2h(x2), L4h(x4), L6h(x6) and L7h(x7) using LIM as follow: 

𝐿1ℎ(𝑥1) = [(∏
𝑥𝜔

𝑥𝜔 − 𝑥1

𝑡

𝜔=2

) ℎ(𝑥1)] 𝑚𝑜𝑑 13 = 8, 

𝐿2ℎ(𝑥2) = [( ∏
𝑥𝜔

𝑥𝜔 − 𝑥2

𝑡

𝜔=1,𝜔≠2

) ℎ(𝑥2)] 𝑚𝑜𝑑 13 = 8, 

𝐿4ℎ(𝑥4) = [( ∏
𝑥𝜔

𝑥𝜔 − 𝑥4

𝑡

𝜔=1,𝜔≠4

) ℎ(𝑥4)] 𝑚𝑜𝑑 13 = 3, 

𝐿6ℎ(𝑥6) = [( ∏
𝑥𝜔

𝑥𝜔 − 𝑥6

𝑡

𝜔=1,𝜔≠6

) ℎ(𝑥6)] 𝑚𝑜𝑑 13 = 1, 

𝐿7ℎ(𝑥7) = [( ∏
𝑥𝜔

𝑥𝜔 − 𝑥7

𝑡

𝜔=1,𝜔≠7

) ℎ(𝑥7)] 𝑚𝑜𝑑 13 = 4. 
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Therefore, 

(θ1, 𝜑1) =  (
2𝜋𝐿1ℎ(𝑥1)

𝑝
,
−𝜋𝐿1ℎ(𝑥1)

𝑝
) =  (

16𝜋

13
,
−8𝜋

13
) 

(θ2, 𝜑2) =  (
2𝜋𝐿2ℎ(𝑥2)

𝑝
,
−𝜋𝐿2ℎ(𝑥2)

𝑝
) =  (

16𝜋

13
,
−8𝜋

13
) 

(θ4, 𝜑4) =  (
2𝜋𝐿4ℎ(𝑥4)

𝑝
,
−𝜋𝐿4ℎ(𝑥4)

𝑝
) =  (

6𝜋

13
,
−3𝜋

13
) 

(θ6, 𝜑6) =  (
2𝜋𝐿6ℎ(𝑥6)

𝑝
,
−𝜋𝐿6ℎ(𝑥6)

𝑝
) =  (

2𝜋

13
,
−𝜋

13
) 

(θ7, 𝜑7) =  (
2𝜋𝐿7ℎ(𝑥7)

𝑝
,
−𝜋𝐿7ℎ(𝑥7)

𝑝
) =  (

8𝜋

13
,
−4𝜋

13
) 

Now, M1, M2, M4, M6, and M7 performs their corresponding bivariate operations on 

|𝑇𝑞
0〉. Then, we get 

|𝑇𝑞
5〉 = 𝑈(θ7, 𝜑7)𝑈(θ6, 𝜑6)𝑈(θ4, 𝜑4)𝑈(θ2, 𝜑2)𝑈(θ1, 𝜑1)|𝑇𝑞

0〉 

= 𝑈(θ7, 𝜑7)𝑈(θ6, 𝜑6)𝑈(θ4, 𝜑4)𝑈(θ2, 𝜑2)𝑈(θ1, 𝜑1)𝑈(θ0, 𝜑0)|𝑇𝑞〉 

= 𝑈(θ7 + θ6 + θ4 + θ2 + θ1 +  θ0, 𝜑7 +  𝜑6 +  𝜑4 +  𝜑2 +  𝜑1 + 𝜑0)|𝑇𝑞〉 

= 𝑈 (
8𝜋

13
+

2𝜋

13
+

6𝜋

13
+  

16𝜋

13
+

16𝜋

13
−  

22𝜋

13
, −

4𝜋

13
−

𝜋

13
−

3𝜋

13
−

8𝜋

13
−

8𝜋

13
+

11𝜋

13
) |𝑇𝑞〉 

= 𝑈(2𝜋, −𝜋)|𝑇𝑞〉 

= |𝑇𝑞〉 

Hence, 5 out of 7 participants can recover the initial information. 

6. SECURITY ANALYSIS 

The decoy particles are utilized in our protocol to detect eavesdropping. Therefore, 
when a spy tries to get transmitted information by mounting an “intercept and resend” 
attack, then only quantum sequence intercepted by him but not the sequence states, 
and is, therefore, unable to resend an exact copy of the sequence because of the 
quantum no-cloning theorem and the Heisenberg uncertainty principle. Furthermore, 
because the spy is unaware of the decoy particles’ positions and states, the attack will 
lead to an increased error rate. Therefore, the attack will be detected with the 

probability 1 − (
5

9
)

𝑘

[19], where k is the number of decoy particles. For a very large k, 

the probability converges to 1. There is another famous attack, “entangle-and-
measure,” which may be taken by a spy. Still, because of the decoy particles, he will 
not obtain any relevant information regarding the secret. 
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Another famous attack is the “participant attack”. In this attack, any number of 
participants fewer than t may attempt to steal information, but they will fail to 

reconstruct the dealer’s phase value(θ0, 𝜑0) =  (
−2𝜋𝑆

𝑝
,

𝜋𝑆

𝑝
). Hence, they are unable to 

obtain any information regarding quantum states. 

 

7. COMPARISION 

Our proposed method is based on the sharing of bi-qutrit quantum states. Due to their 
wide Hilbert space, bi-qutrits may be more efficient than qubits in quantum information 
processing, such as quantum key distribution in the involvement of various 
eavesdroppers. They provide benefits such as better security in a diversity of quantum 
computation protocols, increased communication range for quantum communication, 
innovative fundamental quantum mechanics tests, and more effective quantum gates. 
Also, increasing the number of qutrits leads to the carrying of a large amount of 
information. 

Most of the existing schemes based on qubit quantum states[2, 3, 7, 9, 10], in 
comparison our scheme is based on bi-qutrit. As a result, unlike qubits, our approach 
is made up of high-dimensional quantum states. Because of its high-dimensional 
nature, bi-qutrit provides a larger Hilbert space to process and store information, which 
can reduce circuit complexity, simplify experimental setup, and improve algorithm 
performance. Although the advantages of the bi-qutrit system in numerous 
applications and the potential for future growth are significant, this system gets less 
prominence than standard qubit-based quantum mechanics. Our technique can 
transfer quantum information by combining Lagrange interpolation with a quantum 
bivariate phase shift operation, whereas schemes [20, 21] can only transfer classical 
information. 

The main difference between Xiao’s scheme [21] and our scheme is that it can only 
transfer classical information, but do not share the quantum state. Because of non-
entanglement quantum state sharing, our technique becomes more feasible and 
easier to implement. Because of the higher dimension of bi-qutrit quantum states, they 
enable heightened sensitivity in quantum image processing schemes, they can 
improve the efficiency levels of biological compounds, they provide richer assets for 
quantum simulation, they result in higher increased efficiency in quantum data 
processing and clock synchronization, and they can be useful in quantum 
measurement applications. As bi-qutrit has a huge Hilbert space, it provides a number 
of advantages, ranging from enhanced capacity and noise resistance to unique 
fundamental research opportunities in quantum physics. 

 

8. CONCLUSION 

A bi-qutrit based scheme is proposed for sharing information via. quantum channels. 
Compared to a qubit (superposition of two orthogonal quantum states), a qutrit has 
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large number of quantum states (superposition of three pairwise orthogonal quantum 
states) and is, therefore, beneficial in encoding and carrying more quantum 
information. It has been observed in literature that a qutrit is helpful in encoding more 
information because it has a larger Hilbert Space compared to a qubit. Also, increasing 
the number of qutrit results in the carrying much information. The present work 
proposes “the sharing of information using bi-qutrit quantum states based on bivariate 
quantum gates”. 
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