E-Publication: Online Open Access Vol: 66 Issue 05 | 2023

DOI 10.17605/OSF.IO/R8KH6

PAIRWISE D_{α} -OPEN AND D_{α} -CLOSED FUNCTIONS IN BITOPOLOGICAL SPACES

EMAN ALMUHUR*

Assistant Professor, Department of Basic Science and Humanities, Applied Science Private University, Amman, Amman, Jordan. *Correspondence Author Email: E_almuhur@asu.edu.jo, Orcid No: 00962-65609999-1113

HAMZA QOQAZEH

Assistant Professor, Department of Mathematics, Amman Arab University, Amman, Jordan. Email: hhaaqq983@qmail.com

ALI ATOOM

Assistant Professor, Department of Mathematics, Ajlun National University, Ajloun, Jordan. Email: aliatoom82@yahoo.com

NABEELA ABU-ALKISHIK

Assistant Professor, Department of Mathematics, Jerash University, Jarash, Jordan. Email: Nabeelakishik@yahoo.com

Abstract

 D_{α} –Open Sets That Are Introduced And Analyzed In Topological Spaces By Sayed O.R And Khalil A.M [1] Are Precisely Between The Class Of All A –Open Sets And G –Open Sets. In This Paper, We Introduce The Concepts Of D_A –Open And D_A –Closed Functions In Bitopological Spaces. We Studied When The Graph G(F) Is P –Strongly Closed And P – D_A –Closed Subsets Of The Bitopological Space (X, T_1, T_2) . In Addition, We Define D_A^I –Interior Of A Subset A Of X And D_A^I –Closure And Prove Some Theorems Concerning These Concepts.

Index Terms: $P - D_A$ -Continuous Function, $P - D_A$ -Graph, $P - D_A$ -Open Set.

1) INTRODUCTION

Generalized open sets are a key component of general topology, and many mathematicians worldwide are now concentrating their study on them. The study of differently modified versions of continuity, separation axioms and other concepts using extended open sets is a major issue in real analysis and general topology. Typically, the notions of α –open sets, initiated by Njstad [1] in 1965, and the generalized closed or (g –closed) subsets, presented by Levine [2] in 1970, are the most well-known and also represent sources of inspiration and have been extensively researched in the literature since then.

Since then, lots of mathematicians have focused on using α –open sets and generalized closed sets to generalize different ideas in topology. Kelly [3] pioneered the study of bitopological spaces in a London mathematics society paper titled bitopological spaces in 1963, and since then, several papers have been offered to expand topological notions to bitopological ones. The triple(X, τ_1, τ_2), or simply X, is said to be a bitopological space

E-Publication: Online Open Access Vol: 66 Issue 05 | 2023

DOI 10.17605/OSF.IO/R8KH6

if X is a non-empty set endowed with two topologies τ_1 and τ_2 . Cs'asz'ar [4] proposed the notion of generalized topological spaces in the twentieth century, which has been researched by lots of mathematicians all over the world. As a result, mathematicians adopted a new approach, seeking to extend numerous topological concepts to this new domain.

Dunham [5] in 1982 used g-closed subsets of X to define a new closure operator and hence a new topological space (X,τ^*) where he transferred regularity conditions of a topological space (X,τ) to separation conditions of the new topological space (X,τ^*) . Kasahara [8] introduced α –closed graphs of an operation and initiated the idea of an operation on topological spaces. Ogata [9] introduced the operation α as γ –operation and presented the notion of τ_{ν} which is the set of all γ -open sets.

2) PAIRWISE D_{α} – SETS

Definition 2.1: A subset A of a bitopological space (X, τ_1, τ_2) is $\tau_1 - g$ -closed if

 $C_1(A) \subset O_2(A) \subset \tau_2$ And A is $\tau_2 - g$ -closed if $C_2(A) \subset O_1(A) \subset \tau_1$. If A is $\tau_1 - g$ -closed and $\tau_2 - g$ -closed, then it is called a pairwise g -closed set and denoted by p - g -closed. X - A is p -open.

Theorem 2.2: [1] g —closedness property is closed under arbitrary union provided that every g —closed set is closed.

Definition 2.3: In a bitopological space (X, τ_1, τ_2) , if A is a subset of X then $\forall i, j = 1, 2$, $i \neq j$:

- i. If $A \subset int_i$ (cl_j (int_i (A))), then A is called $\tau_i \alpha$ -open.
- ii. If $A \subset cl_i$ (int_i(cl_i (A))), then A is called $\tau_i \alpha$ -closed.
- iii. A is τ_i -generalized closed (τ_i g -closed) if cl_i (A) \subset U for some τ_i -open subset U of (X, τ_i) .
- iv. $GO(X) = \{A: A \text{ is } \tau_i g open\}$
- $v. \quad GC(X) = \{A : A \text{ is } \tau_i g closed\}$
- vi. If $0 = \cap \{0: 0 \text{ is } \tau_i \alpha \text{open, } 0 \subset A\}$, then 0 is denoted by $\text{int}_{\alpha}(A)$.
- vii. If $F = \cap \{F: F \text{ is } \tau_i \alpha \text{closed}, A \subset F\}$, then F is denoted by $cl_{\alpha}(A)$.
- $\text{viii.} \quad cl_i^*(A) \text{ denotes} \cap \{M \colon M \text{ is } \tau_i g closed, A \subset M\}.$
- $\text{ix.} \quad \tau_i \alpha O(X) = \{ \text{U: U is } i \alpha \text{open in } X \}.$
- $x. \quad \tau_i \alpha C(X) = \{F \colon F \text{ is } i \alpha open \text{ in } X\}.$
- $\text{xi.} \quad \tau_i \alpha O(X,x) = \{ \text{U} \colon x \in \text{U} \in \tau_i \alpha O(X) \}.$
- xii. $i \alpha C(X, x) = \{F: x \in F \in \tau_i \alpha C(X)\}.$

E-Publication: Online Open Access

DOI 10.17605/OSF.IO/R8KH6

Vol: 66 Issue 05 | 2023

i. The subspace $\{(x, f(x)): x \in X\}$ of $X \times Y$ is the graph of f [6] and denoted by G(f).

ii. f is p -closed if G(f) is a (τ_i, σ_i) -closed subset of $X \times Y \forall i = 1,2$.

Definition 2.4: If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, then:

- iii. f is a p-strongly closed graph if \forall $(x,y) \in G(f)$, \exists U an τ_i -open subset of X and V a τ_i -open subset of Y such that $x \in V$ and $(U \times cl_i(V)) \cap G(f) = \varphi \forall i, j = 1, 2, i \neq j$.
- iv. f is p-strongly α -closed graph if $\forall (x,y) \in X \times Y G(f)$, $\exists U$ an $\tau_i \alpha$ -open subset of X and Y a $\tau_j \alpha$ -open subset of Y such that $(U \times cl_j(V)) \cap G(f) = \phi \ \forall i,j = 1,2$, $i \neq j$.

Lemma 2.5: The graph G(f) is p —strongly closed iff $\forall (x,y) \notin G(f)$, $\exists U$ a $\tau_i - \alpha$ —open subset of X and W a $\tau_j - \alpha$ —open subset of Y such that containing x and y (respectively) such that $f(U) \cap cl_j(W) = \phi \ \forall i,j = 1,2$, $i \neq j$.

Definition 2.6: A subset A of (X, τ_1, τ_2) is $\tau_i - D_\alpha$ -closed if $cl_i^* \left(int_j \left(cl_i(A) \right) \right) \ \forall i, j = 1, 2, i \neq j$. If A is $\tau_i - D_\alpha$ -closed, then X - A is $\tau_i - D_\alpha$ -open .

If A is $\tau_i - D_\alpha$ -closed $\forall i = 1,2$, then A is $p - D_\alpha$ -closed. The set of all $p - D_\alpha$ -closed subsets of (X, τ_1, τ_2) is denoted by $p - D_\alpha - C(X)$.

Theorem 2.7: (i) A subset F of (X, τ_1, τ_2) is an $\tau_i - D_\alpha$ -closed if it is $\tau_i - \alpha$ -closed $\forall i = 1,2$.

(ii) A subset F of (X, τ_1, τ_2) is $\tau_i - D_\alpha$ -closed if it is $\tau_i - g$ -closed $\forall i = 1, 2$.

Proof: (i) Let F be a $\tau_i - \alpha$ -closed subset of $(X, \tau_1, \tau_2) \ \forall i = 1, 2.$

Then $cl_i^*(F) \subset cl_i(F)$ [7].

Hence, $cl_i(int_j(cl_i(F))) \subset F$.

So,
$$cl_i^* \left(int_j \left(cl_i(F) \right) \right) \subset cl_i^* \left(int_j \left(cl_i^*(F) \right) \right) \subset F \ \forall i,j = 1,2 \ , i \neq j.$$

Therefore, F is $\tau_i - D_\alpha$ —closed

(ii) Let F be a $\tau_i - g$ -closed subset of $X \forall i = 1,2$.

Then, $cl_i^*(F) = F$. [7]

So,
$$int_i(cl_j^*(F))\subset cl_j^*(F) \ \forall i,j=1,2,i\neq j.$$

Hence,
$$cl_i^* \left(int_j \left(cl_i^*(F) \right) \right) \subset cl_i^* \left(cl_i^*(F) \right) \subset cl_i^*(F) = F$$
.

Thus, F is $\tau_i - D_\alpha$ —closed.

Lemma 2.8: If F is $\tau_i - g$ —closed subset of (X, τ_1, τ_2) such that $int_j(cl_i^*(A)) \subset A \subset F$ for some $A \subset X$, then A is $\tau_i - D_\alpha$ —closed $\forall i, j = 1, 2, i \neq j$.

E-Publication: Online Open Access

Vol: 66 Issue 05 | 2023 DOI 10.17605/OSF.IO/R8KH6

Proof: $cl_i^*(F) = F$ since F is $\tau_i - g$ —closed subset of $X \, \forall i = 1,2$.

Hence,
$$cl_i^* \left(int_j \left(cl_i^*(A) \right) \right) \subset cl_i^* \left(int_i^*(A) \right) \subset A \ \forall i,j = 1,2 \ , i \neq j.$$

Thus, A is $\tau_i - D_\alpha$ -closed.

Theorem 2.9: In the bitopological space (X, τ_1, τ_2) , arbitrary intersection of $\tau_i - D_{\alpha}$ -closed sets is $\tau_i - D_{\alpha}$ -closed.

Proof: If $F = \{F_{\beta} : \beta \in \Gamma\}$ is a family of $\tau_i - D_{\alpha}$ —closed subsets of (X, τ_1, τ_2) .

Then,
$$cl_i^*\left(int_j\left(cl_i^*(F_\beta)\right)\right) \subset F_\beta \ \forall \beta \in \Gamma.$$

But $\bigcap_{\beta \in \Gamma} F_{\beta} \subset \beta \in \Gamma \ \forall \beta \in \Gamma$.

So,
$$cl_i^* \left(int_j \left(cl_i^* (F_\beta) \right) \right) \subset \bigcap_{\beta \in \Gamma} cl_i F_\beta$$

Hence,
$$cl_i^* \left(int_j \left(cl_i^* (F_\beta) \right) \right) \subset \bigcap_{\beta \in \Gamma} cl_i F_\beta$$

$$\subset cl_i^*\left(int_j\left(cl_i^*(F_\beta)\right)\right)$$

$$\subset \bigcap_{\beta \in \Gamma} cl_i F_\beta \ \forall \beta \in \Gamma.$$

Thus, $\bigcap_{\beta \in \Gamma} F_{\beta}$ is $\tau_i - D_{\alpha}$ -closed.

Corollary 2.10: (i) If F_1 and F_2 are two subsets of (X, τ_1, τ_2) such that F_1 is $\tau_i - D_\alpha$ -closed and F_2 is $\tau_i - \alpha$ -closed, then $F_1 \cap F_2$ is $\tau_i - D_\alpha$ -closed $\forall i = 1, 2$.

(ii) If F_1 and F_2 are two subsets of (X, τ_1, τ_2) such that F_1 is $\tau_i - D_{\alpha}$ -closed and F_2 is $\tau_i - g$ -closed, then $F_1 \cap F_2$ is $\tau_i - D_{\alpha}$ -closed $\forall i = 1, 2$.

Remark 2.11: In the bitopological space (X, τ_1, τ_2) , if A is a subset of X, then $\forall i = 1,2$:

(i)
$$X - int_i(X - A) = cl_i(A)$$
.

(ii)
$$X - cl_i(X - A) = int_i(A)$$
.

Theorem 2.12: In (X, τ_1, τ_2) , a subset A is $\tau_i - D_\alpha$ —open iff

$$A \subset int_i(cl_j^*(int_i(A))) \ \forall i,j = 1,2, i \neq j.$$

Proof: For the necessary part, if A is an $\tau_i - D_\alpha$ -open subset of $X \ \forall i = 1,2.$

Then, X - A is $\tau_i - D_\alpha$ —closed and $cl_i^*(int_i(cl_i^*(A)) \subset X - A$.

So,
$$A \subset int_i^* \left(cl_j \left(int_i^* (A) \right) \right) \forall i, j = 1, 2, i \neq j.$$

For the sufficient part, if $\subset int_i^*(cl_j(int_i^*(A))) \forall i, j = 1, 2, i \neq j$.

E-Publication: Online Open Access

Vol: 66 Issue 05 | 2023

DOI 10.17605/OSF.IO/R8KH6

Then,
$$X - int_i^* \left(cl_j \left(int_i^* (A) \right) \right) \subset X - A$$
.

So,
$$int_i^* \left(cl_j \left(int_i^* (A) \right) \right) \subset X - A$$

Hence, X - A is $\tau_i - D_{\alpha}$ -closed.

Thus, A is $\tau_i - D_\alpha$ —open.

Corollary 2.13: For (X, τ_1, τ_2) , a subset A is $\tau_i - D_\alpha$ —open if there exists U a $\tau_i - g$ —open subset such that $U \subset A \subset int_i^* \left(cl_j(U) \right)$, then A is $\tau_i - D_\alpha$ —open $\forall i, j = 1, 2, i \neq j$.

Proof: Suppose that *U* is an $\tau_i - g$ –open subset of $X \forall i = 1,2$.

Then,
$$X-U$$
 is τ_i-g -closed and $X-int_i^*\left(cl_j(X-U)\right)\subset X-A\subset X-U$

Thus,
$$cl_i^*(int_j(X-U)) \subset X - A \subset X - U$$
.

So, X - A is $\tau_i - D_{\alpha}$ -closed.

Hence, A is $\tau_i - D_{\alpha}$ -open $\forall i = 1,2$.

Theorem 2.14: For (X, τ_1, τ_2) , every $\tau_i - \alpha$ -open $(\tau_i - g$ -open) is $\tau_i - D_\alpha$ -open $\forall i = 1,2$.

Corollary 2.15: For the space (X, τ_1, τ_2) :

- (i) Arbitrary union of $\tau_i D_\alpha$ —open set is $\tau_i D_\alpha$ —open $\forall i = 1,2.$
- (ii) If A is an $\tau_i D_\alpha$ —open subset of X and B is an $\tau_i \alpha$ —open set, then $A \cup B$ is $\tau_i D_\alpha$ —open.
- (iii) If A is an $\tau_i D_\alpha$ —open subset of X and Y is an $\tau_i g$ —open set, then $A \cup Y$ is $\tau_i D_\alpha$ —open.

Definition 2.16: In the bitopological space (X, τ_1, τ_2) , if $A \subset X$, then $\forall i = 1,2$:

i. The D_{α}^{i} -interior of a subset A of X, denoted by D_{α}^{i} - $int_{i}(A)$, equals

$$\bigcup_{\nu \in \Gamma} \{ U_{\nu} \colon U_{\nu} \in \tau_i - D_{\alpha} O(X), \ U_{\nu} \subset A \}.$$

ii. The D^i_{α} -closure of a subset A of X, denoted by $D^i_{\alpha}-cl_i(A)$ equals

$$\bigcap_{\gamma \in \varGamma} \{F_{\gamma} \colon F_{\gamma} \in \tau_{i} - D_{\alpha}C(X), A \subset F_{\gamma}\}.$$

Lemma 2.17: In the bitopological space (X, τ_1, τ_2) , if $A \subset X$, then $\forall i = 1,2$:

(i)
$$X - (D^i_\alpha - int_i(A)) = D^i_\alpha - cl_i(A)$$

(ii)
$$X - (D^i_\alpha - cl_i(A)) = D^i_\alpha - int_i(A)$$

E-Publication: Online Open Access

Vol: 66 Issue 05 | 2023

DOI 10.17605/OSF.IO/R8KH6

Theorem 2.18: For the bitopological space (X, τ_1, τ_2) , if $A, B \subset X$, then $\forall i, j = 1, 2, i \neq j$, then:

(i)
$$D_{\alpha}^{i} - int_{i}(\phi) = \phi$$
 and $D_{\alpha}^{i} - int_{i}(X) = X$.

(ii)
$$A$$
 is $p - D_{\alpha}$ open iff $D_{\alpha}^{i} - int_{i}(A) = A$ and $D_{\alpha}^{j} - int_{i}(A) = A \ \forall i, j = 1, 2 \ i \neq j$.

(iii)
$$\tau_i - \alpha - int_i(A) \subset D^i_{\alpha} - int_i(A) \subset A$$
.

(iv)
$$int_i^*(A) \subset D_\alpha^i - int_i(A)$$

(v)
$$D_{\alpha}^{i} - int_{i} \left(D_{\alpha}^{i} - int_{j}(A) \right) = D_{\alpha}^{i} - int_{j}(A).$$

(vi) If
$$A \subset B$$
, then $D_{\alpha}^{i} - int_{j}(A) \subset D_{\alpha}^{i} - int_{j}(B)$

(vii)
$$(D_{\alpha}^{i} - int_{i}(A)) \cup (D_{\alpha}^{i} - int_{i}(B)) \subset D_{\alpha}^{i} - int_{i}(A \cup B)$$

(viii)
$$D_{\alpha}^{i} - int_{i} (A \cap B) \subset (D_{\alpha}^{i} - int_{i}(A)) \cap (D_{\alpha}^{i} - int_{i}(B)).$$

Theorem 2.19: In the bitopological space (X, τ_1, τ_2) , if $A \subset X$, then $\forall i, j = 1, 2, i \neq j$:

(i)
$$D_{\alpha}^{i} - int_{j}(A) = A \cap int_{i}^{*} \left(cl_{j} \left(int_{i}^{*}(A) \right) \right)$$
.

(ii)
$$D_{\alpha}^{i} - cl_{j}(A) = A \cup int_{i}^{*} \left(cl_{j} \left(int_{i}^{*}(A) \right) \right)$$
.

Proof: (i) $D_{\alpha}^{i} - int_{i}(A)$ is $p - D_{\alpha}$ – open and $D_{\alpha}^{i} - int_{i}(A) \subset A$.

Hence,
$$D_{\alpha}^{i} - int_{j}(A) \subset int_{i}^{*} \left(cl_{j} \left(D_{\alpha}^{i} - int_{j}(A) \right) \right)$$

$$\subset int_i^* (cl_j(int_i^*(A)).$$

Now,
$$D_{\alpha}^{i} - int_{j}(A) \subset A \cup int_{i}^{*}(cl_{j}(int_{i}^{*}(A)))$$

So,
$$A \cup int_i^* \left(cl_j \left(int_i^* (A) \right) \right)$$
 is $p - D_{\alpha}$ — open

$$A \cup int_i^* \left(cl_j \left(int_i^*(A) \right) \right) \subset D_{\alpha}^i - int_j(A).$$

Thus,
$$D_{\alpha}^{i} - int_{j}(A) = A \cap int_{i}^{*} (cl_{j}(int_{i}^{*}(A))).$$

(ii)
$$D_{\alpha}^{i} - cl_{j}(A) = X - int_{j}(X - A) =$$

$$= X - (X - A)$$

$$= X - (X - A) \cup (X - int_{i}^{*} \left(cl_{j} \left(int_{i}^{*}(X - A) \right) \right))$$

$$= A \cup cl_{i}^{*} \left(int_{j} \left(cl_{i}^{*}(A) \right) \right)$$

DOI 10.17605/OSF.IO/R8KH6

3) PAIRWISE D_{α} -CONTINUOUS FUNCTIONS

Definition 3.1: If (X, τ_1, τ_2) and (Y, σ_1, σ_2) are two bitopological spaces, then the function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called $\tau_i - D_\alpha$ -continuous if the inverse image of each σ_i -open set in Y is $\tau_i - D_\alpha$ -open in $X \, \forall i, j = 1, 2, i \neq j$.

Lemma 3.2: (i) Every $\tau_i - \alpha$ —continuous function is $\tau_j - D_\alpha$ —continuous $\forall i, j = 1, 2, i \neq j$.

(ii) Every $\tau_i - g$ —continuous function is $\tau_i - D_\alpha$ —continuous $\forall i, j = 1, 2, i \neq j$ [10].

Theorem 3.3: In (X, τ_1, τ_2) and (Y, σ_1, σ_2) , if $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, then $\forall i, j = 1, 2, i \neq j$ and $\forall A \subset X, B \subset Y$, the following are equivalent:

- (i) f is $\tau_i D_\alpha$ —continuous.
- (ii) $\forall x \in X$ and for each τ_j -open subset V of Y such that $f(x) \in V$, there exists a $\tau_j D_\alpha$ -open subset U of X containing such that $x \in X$ and $f(U) \subset V$.
- (iii) Inverse image of each σ_1 -closed subset of Y is τ_2 -closed subset of X.
- (iv) $f(D^i_{\alpha} int_i(A)) \subset cl_i(f(A))$
- (v) $D_{\alpha}^{i} cl_{i}(f^{-1}(B)) \subset f^{-1}(cl_{i}(B)).$
- (vi) $f^{-1}(int_i(B)) \subset D^i_{\alpha} int_i(f^{-1}(B)).$

Proof:

(i)
$$\rightarrow$$
(ii) $f^{-1}(V) \in p - D_{\alpha}O(X) \forall p$ -open subset of Y .

Now, if
$$x \in f^{-1}(V)$$
, then $f(f^{-1}(V)) \subset V$

(ii)→(iii) Direct

(iii)
$$\rightarrow$$
(iv) If F is a p -closed subset of Y such that $F \subset f(A)$.

Then $A \subset f^{-1}(F)$ is $p - D_{\alpha}$ – closed subset of X.

Hence,
$$D_{\alpha}^{i} - cl_{j}(A) \subset D_{\alpha}^{i} - cl_{j}(f^{-1}(F)) = f^{-1}(F)$$
.

Thus,
$$f(D^i_\alpha - cl_i(A)) \subset F$$
.

Therefore,
$$f(D^i_{\alpha} - cl_j(f(A)) \subset cl_j(f(A))$$
.

(iv) \rightarrow (v) Let B be a subset of Y.

Then
$$f(D^i_{\alpha}-cl_j(f^{-1}(B))\subset cl_i(f(f^{-1}(B))$$

$$\subset cl_i(B).$$

So,
$$D_{\alpha}^{i} - cl_{j}((f^{-1}(B)) \subset cl_{j}f^{-1}((B).$$

Hence,
$$D_{\alpha}^{i} - cl_{j}((f^{-1}(B))) \subset f^{-1}(cl_{j}(B)).$$

E-Publication: Online Open Access

Vol: 66 Issue 05 | 2023

DOI 10.17605/OSF.IO/R8KH6

$$(V) \rightarrow (Vi) D_{\alpha}^{i} - cl_{i} (f^{-1}(Y - B)) \subset f^{-1}(D_{\alpha}^{i} - cl_{i} (Y - B)).$$

Then
$$D_{\alpha}^{i} - cl_{i}(X - f^{-1}(B)) \subset f^{-1}(Y - int_{i}(B))$$
.

So,
$$-D_{\alpha}^{i} - int_{i} (f^{-1}(B)) \subset X - f^{-1}(int_{i}(B)).$$

Thus,
$$f^{-1}(int_i(B)) \subset D^i_{\alpha} - int_i(f^{-1}(B))$$

(vi) \rightarrow (i) Let V be a τ_i –open subset of Y [11].

Then
$$f^{-1}(int_i(V)) \subset D^i_\alpha - int_i(f^{-1}(V))$$
.

So,
$$f^{-1}(int_i(V)) \subset D^i_{\alpha} - int_i(f^{-1}(V))$$
.

Thus, $f^{-1}(V)$ is an $\tau_i - D_{\alpha}$ —open.

Consequently, f is $p - D_{\alpha}$ —continuous.

Theorem 3.4: The composition of $\tau_i - D_{\alpha}$ —continuous function and τ_i —continuous function in the bitopological space (X, τ_1, τ_2) is $\tau_i - D_{\alpha}$ —continuous $\forall i = 1, 2$.

Definition 3.5: If (X, τ_1, τ_2) and (Y, σ_1, σ_2) are two bitopological spaces, then the function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ has D_{α} -closed graph if $\forall (x, y) \in (X \times Y) - G(f)$,

$$\exists U \in \tau_i - D_\alpha O(X, x) \text{ and } V \in GO(Y, y) : (U \times cl_i^*(V)) \cap G(f) = \phi \ \forall i = 1, 2.$$

Lemma 3.6: In (X, τ_1, τ_2) , every closed graph is $\tau_i - D_{\alpha}$ -closed $\forall i = 1, 2$.

Theorem 3.7: If (X, τ_1, τ_2) and (Y, σ_1, σ_2) are two bitopological spaces, then the function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $\tau_i - D_\alpha$ -closed graph iff $\forall (x, y) \in (X \times Y) - G(f)$,

$$\exists U \in \tau_i - D_\alpha O(X, x) \text{ and } V \in GO(Y, y): (U \times cl_i^*(V)) \cap G(f) = \phi \ \forall i = 1, 2.$$

Proof: For the necessary part, if $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is D_α -closed graph.

Then $\forall (x,y) \in (X \times Y) - G(f)$, $\exists U \in \tau_i - D_\alpha O(X,x)$ and $V \in GO(Y,y)$:

$$(U\times cl_i^*(V))\cap G(f)=\phi.$$

So, $f_i(x) \in f_i(U)$ and $y \in cl_i^*(V)$.

But $y \neq f_i(x)$, hence $f_i(U) \cap cl_i^*(V) = \phi$.

For the sufficient part, suppose that $(x, y) \in (X \times Y) - G(f)$

$$\exists U \in \tau_i - D_\alpha O(X, x) \text{ and } V \in GO(Y, y) : (U \times cl_i^*(V)) \cap G(f) = \phi \ \forall i = 1, 2.$$

Then $f_i(x) \neq y$ and $f_i(U) \cap cl_i^*(V) = \phi$.

Theorem 3.8: If (X, τ_1, τ_2) and (Y, σ_1, σ_2) are two bitopological spaces, then the function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $\tau_i - D_\alpha$ -closed graph if $\forall (x, y) \in (X \times Y) - G(f)$,

$$\exists U \in \tau_i - D_\alpha O(X, x) \text{ and } V \in \tau_j - D_\alpha (Y, y) : (\mathsf{U} \times c l_j^*(V) \cap G(f) = \phi.$$

E-Publication: Online Open Access

Vol: 66 Issue 05 | 2023 DOI 10.17605/OSF.IO/R8KH6

Proof: If f is an D_{α} -closed graph, then for $(x,y) \in (X \times Y) - G(f)$, $\exists U \in \tau_i - D_{\alpha}O(X,x)$ and $V \in GO(Y,y)$ [13].

But $\tau_i - g$ -subset is $\tau_i - D_\alpha$ -open, then $D_\alpha^i - cl_i(V) \subset cl_i(V)$.

Hence, $(U \times D^i_\alpha - cl_i(V)) \cap G(f) = \phi \ \forall i = 1,2 \ [14].$

Theorem 3.9: If (X, τ_1, τ_2) and (Y, σ_1, σ_2) are two bitopological spaces, then the function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is D_{α} -closed graph $\forall (x, y) \in (X \times Y) - G(f), \exists U \in D_{\alpha}O(X, x)$ and

$$\forall \in D_{\alpha}(Y,y) \otimes U \times D_{\alpha}^{i} - cl_{i}(V) \cap G(f) = \phi \text{ if } \forall (x,y) \in (X \times Y) - G(f),$$

$$\exists U \in \tau_i - D_{\alpha}O(X,x) \text{ and } V \in \tau_i - D_{\alpha} - (Y,y): f_i(U) \cap D_{\alpha}^i - cl_i(V) = \phi.$$

Definition 3.10: If (X, τ_1, τ_2) and (Y, σ_1, σ_2) are two bitopological spaces, then the function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is has a strongly D_{α} —closed graph if $\forall (x, y) \in (X \times Y) - G(f)$,

 $\exists U \in D_{\alpha}O(X,x) \text{ and } V \in O(Y,y): (U \times cl_i(V)) \cap G(f) = \phi \ \forall i = 1,2.$

Remark 3.11: (i) A strongly D_{α} –closed graph is D_{α} –closed in (X, τ_1, τ_2) .

(ii) Every strongly $\tau_i - \alpha$ —closed graph is strongly D_α —closed graph in $(X, \tau_1, \tau_2) \ \forall i = 1, 2$.

Theorem 3.12: If (X, τ_1, τ_2) and (Y, σ_1, σ_2) are two bitopological spaces and fot the function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following are equivalent:

- (i) f has strongly D_{α} -closed graph.
- (ii) $\forall (x,y) \in (X \times Y) G(f)$, $\exists U \in D_{\alpha}O(X,x)$ and $V \in O(Y,y)$: $f(U) \cap cl_i(V) = \phi \ \forall i = 1,2$.
- (iii) $\forall (x,y) \in (X \times Y) G(f), \exists U \in D_{\alpha}O(X,x) \text{ and } V \in O(Y,y): (U \times cl_i(V)) \cap G(f) = \phi.$

Corollary 3.12: If (X, τ_1, τ_2) and (Y, σ_1, σ_2) are two bitopological spaces and the function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is strongly D_α —closed graph, then $\forall x \in X$,

$$f(x) = \bigcap \{cl_i(W): W \in p - D_\alpha O(X, x)\}.$$

Proof: Suppose that if $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is strongly D_α -closed graph, then $\exists y\neq f(x):y\in \cap \{cl_i(W):W\in p-D_\alpha O(X,x)\}.$

So, $y \in cl_i(f(W))$ for some $W \in p - D_\alpha O(X, x)$.

Hence, $\forall V \in \alpha O(Y, y), V \cap f(W) \neq \phi$.

Thus, $f(W) \neq \phi$ and $f(W) \subset V \subset f(V) \cap cl^i_{\alpha}(V)$ which contradicts that f is strongly D_{α} -closed graph.

As a consequence, $x \in X$, $f(x) = \bigcap \{cl_i(W): W \in p - D_\alpha O(X, x)\}.$

Theorem 3.13: If (X, τ_1, τ_2) and (Y, σ_1, σ_2) are two bitopological spaces, the function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $p - D_{\alpha}$ -continuous, and Y is p -Housdorff, then G(f) is strongly $p - D_{\alpha}$ -closed.

E-Publication: Online Open Access

Vol: 66 Issue 05 | 2023 DOI 10.17605/OSF.IO/R8KH6

Proof: Suppose that $(x, y) \in (X \times Y) - G(f)$. Since Y is p -Housdorff,

 $\exists W \in O(Y, y): f(x) \notin cl_i(W) \ \forall i = 1,2.$

But $cl_i(W)$ is τ_i -closed, so $Y - cl_i(W) \in O(Y, y)$ and $\exists U \in D_\alpha O(X, x) : f(U) \subset Y - cl_i(W)$.

Hence, $f(U) \cap cl_i(W) = \phi$.

Thus, G(f) is strongly D_{α} –closed [12].

Acknowledgment

We would like to express our sincere gratitude to each member of Applied Science Private University, Amman Arab University, Ajlun National University and Jerash University for their invaluable guidance and support throughout this work. Their expertise and encouragement helped us to achieve this research.

References

- 1. O.R. Sayed., A.M.Khalil, (2016). Some applications of D_{α} –closed sets in topological spaces, egyptian journal of basic and applied science, 3, pp.26-34. Available from: https://doi.org/10.1016/j.ejbas.2015.07.005
- 2. N. Levine, (1970). Generalized closed sets in topology. Rendiconti del Circolo Matematico di Palermo, 19, pp.89-96.
- 3. J.C.Kelly, (1963). Bitopolgical Spaces. Proceedings of the London Mathematical Society, 13, pp.71-89. Available from: https://doi.org/10.1112/plms/s3-13.1.71
- 4. A´. Cs´asz´ar, (1997). Generalized open sets, Acta Mathematica Hungarica, 75, pp.65-87. Available from: https://doi.org/10.1023/A:1006582718102
- 5. O. Njåstad O, (1965). On some classes of nearly open sets. Pacific Journal of Mathematics, 15, pp.961-70. Available from: https://doi.org/10.2140/pjm.1965.15.961
- 6. PE. Long, (1969). Functions with closed graphs. American Mathematical Monthly, 76, pp. 930-2.
- 7. W. Dunham, (1982). A new closure operator for non-T1 topologies. Kyungpook Mathematical Journal, 22, pp. 55-60.
- 8. S. Kasahara, (1979). Operation-compact spaces. Mathematica Japonica, 24, pp.97-105. Available from: https://doi.org/10.1063/1.5112210
- 9. H. Ogata, (1991). Operation on topological spaces and associated topology, Mathematica Japonica, 36(1), pp. 175-184.
- 10. A. Khalaf., S, Jafari., H. Ibrahim, (2015), Bioperations on α –Open Sets in Topological Spaces. International Journal of Pure and Applied Mathematics, 103(4), pp. 653-666. Available from: http://dx.doi.org/10.12732/ijpam.v103i4.5
- 11. S. Missier., P. Rodrigo. (2014), Strongly α^* –Continuous Functions in Topolgical Spaces, IOSR Journal of Mathematics, 10(4), pp. 55-60.

Xi'an Shiyou Daxue Xuebao (Ziran Kexue Ban)/ Journal of Xi'an Shiyou University, Natural Sciences Edition

ISSN: 1673-064X

E-Publication: Online Open Access

Vol: 66 Issue 05 | 2023 DOI 10.17605/OSF.IO/R8KH6

- 12. N. Kalaivani., D. Saravanakumar, (2018). On Slightly $\alpha-\gamma$ –Continuous Functions in Topological Spaces, Journal of Physics: Conf. Series 1000. Available from http://dx.doi.org/10.1088/1742-6596/1000/1/012117
- 13. R. Nachiyar., K. Bhuvaneswari, (2014). Nano Generalized *A* –Continuous and Nano A Generalized Continuous Functions in Nano Topological Spaces. International Journal of Mathematics Trends and Technology, 14(2), pp. 79-83. Available from: http://dx.doi.org/10.14445/22315373/IJMTT-V14P512
- 14. E. Almuhur (2022). On Pairwise C-closed Topological Spaces. WSEAS Transactions on Mathematics, 21(40), pp.343-346. Available from: http://dx.doi.org/10.37394/23206.2022.21.40